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We calculate the power spectrum of the noisy current in a narrow channel that admits one charge carrier at
a time from the leftL or right R reservoirs. The random positive and negative currents are produced by the
random arrival and departure of discrete charges at a measuring device on one side. The unidirectional currents
are not independent because the presence of one charge in the channel blocks the entrance of another. Four
classes of trajectories are possible: thetrans trajectoriesLR andRL andcis trajectoriesLL andRR. The power
spectrum of the total current is described by explicit formulas, depending only on the statistics of the interar-
rival times and times spent in the channel. These formulas generalize those of shot~e.g., Schottky! noise and
predict more complex behavior than the sum of the noises of the four types of trajectories, if they were
independent:~i! the mean current and the intensity of fluctuations saturate as the arrival time on one side
decreases and~ii ! the noise intensity depends nonlinearly on the mean net current. Explicit formulas are given
and special cases are analyzed.@S1063-651X~96!03808-1#

PACS number~s!: 02.50.Ey, 05.60.1w

I. INTRODUCTION

Shot noise is the noisy current produced by the random
arrival of identical discrete~unit! charges at a measuring de-
vice. The classical mathematical theory of shot noise as-
sumes that the interarrival times of charges are independent
identically distributed~IID ! positive random variables@1,2#.
This is the main feature of classical shot noise theory. More
generalized theories allow some dependence between inter-
arrival times, but still require them to be identically distrib-
uted ~see the generalized Campbell theorem on the mean
current in@3#!. In these theories charge carriers are counted
as they arrive at the measuring device, where they are cap-
tured and cannot leave. The measuring device acts as a
~mathematical! absorbing boundary. In classical shot noise
the interarrival times at the measuring device are IID expo-
nentially distributed random variables and the intensityK
equals the mean current^I & ~Schottky’s formula@4#!

K5^I &. ~1.1!

If the interarrival times are IID random variablest1,t2, . . . ,
not necessarily exponentially distributed, then@2#

^I &5
1

^t&
~1.2!

and

K5
^t2&2^t&2

^t&3
. ~1.3!

In more general situations the measuring device distin-
guishes between incoming and outgoing charge movements.
Movements in one direction may separately be classical shot
noises, but the combination may or may not. Landauer@5#
considered the situation in which the sum is nearly a classi-
cal shot noise. He considered two independent sources of

current, the first flowing from left to rightI LR and the second
from right to left I RL , both defined to be positive. In this case
the net current is the differenceI5I RL2I LR and the intensity
of the resulting noise is the sum

K5^I LR&1^I RL&. ~1.4!

In other situations the unidirectional currents are not inde-
pendent and corrections are needed to Eq.~1.4!. For ex-
ample, if the unidirectional currents have to move one charge
at a time through a channel to reach the measuring device,
the motion in one direction blocks the motion in the other, so
the movements are not independent. Together they are not
classical shot noise and Eqs.~1.1!–~1.4! do not apply.

We analyze exactly this situation: a channel that admits
one charge at a time from the leftL or rightR reservoir. The
measuring device is on one side of the channel and counts
incoming charges as positive and outgoing charges as nega-
tive. In our model, discrete charges arrive at each end of the
channel from different populations in the reservoirs that may
have different concentrations and therefore different interar-
rival times. They may enter the channel, if it is empty, and
spend random times moving to one end of the channel or the
other. These times are determined by the dynamics of motion
outside ~interarrival times! or inside the channel~full-
channel times!.

Motion inside the channel is determined by many factors
that depend on the physical setup of the problem. A separate
theory, for example@6#, is needed to determine the statistics
of the full-channel times, given the details of the motion. The
full-channel times depend on the direction the charge moves:
more precisely, they depend on the side they enter and exit.
For example, if discrete charges cross the same channel but
in different directions, they move, in time, over different
potential profiles~even if their charge and other properties
are the same!, because the profiles are usually not symmetric.
The different charge carriers can also have different proper-
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ties, e.g., different, mass, size, or friction. Thus different
charge carriers spend different times in the channel. Carriers
can cross the channel~i.e., enter at one side and exit the
other, carrying atrans flux! or they can enter and leave the
same side~either rightR or left L, carrying acis flux!. This
situation violates the assumptions of shot noise theory be-
cause the counting events are not identical~i.e., some events
are positive and some are negative! and are not independent
~i.e., carriers exclude each other in the channel!. Small sys-
tems such as the~protein! channels of biological membranes
have these characteristics@7,8#.

The main result of this paper is a formula for the power
spectral density function of current fluctuations in the single
occupancy model described above@Eq. ~3.33!# and for its
intensity @Eq. ~4.1!#. These formulas involve no approxima-
tions beyond those in the model itself. We compute the spec-
tral density for the general case where the distribution of
waiting and full-channel times are not necessarily described
by simple rate laws, i.e., our model is not Markovian. In
diffusion systems, such as channels, this reflects the fact that
barriers are often small and so Markovian jump models do
not apply@9#. Thus the dynamics in the channel can be gen-
eral, ranging from ballistic to Brownian, or even Markovian
dynamics.

Our intensity formula adds terms to Eq.~1.4!, due to the
dependence introduced by single occupancy and competi-
tion. The cis trajectories, included here, add a significant,
sometimes dominant, contribution to the fluctuations. The
power spectral density function is different from that of shot
noise. It is not flat with frequency, but rather has a variety of
shapes, depending on conditions, even when all distributions
are exponential; noise intensity depends nonlinearly on the
net current. The formulas are generalized to allow mixed
populations of different species of charge carriers on both
sides of the channel@Eq. ~5.1!#.

This paper is organized as follows. First, in Sec. II we
define exactly the model under consideration. This includes
the specification of the measuring device as a counter of
charges. In Sec. III we calculate the spectral density and
correlation functions. Section IV presents the main result of
this paper: the spectral density of the measured current. A
number of special cases are presented. Section V treats the
case of several species, in which slow charge carriers may
dramatically change the measured current. Our mathematical
computation generalizes the analysis in@4#, Chap 5, pp.
161–174, of correlations of electronic signals.

II. DEFINITIONS AND THE COUNTER MODEL

Our mathematical model describes a narrow channel that
contains one charge carrier at a time. We assume that posi-
tive charges~with charge11! arrive at the left end of the
channel at IID random times, denoted genericallyDL . Simi-
larly, charges arrive at the right end of the channel at IID
random timesDR . These are calledinterarrival times. They
do not depend on whether or not the channel is occupied. If
the channel is empty upon arrival of a charge carrier, the
charge enters. If the channel is occupied, it is rejected and
returned to the reservoir; it does not queue up.E is the time
between the moment the channel empties and refills~from
either side!. If it refills from the left, we label itE and call it

EL , and if it refills from the right, we call itER . We callEL
and ER empty-channel timesor waiting times. We assume
that the system is in the steady state, that is, the stochastic
processes have been going on for an infinite time at the mo-
ment observation begins. If observation of the channel starts
sometime during the period when the channel is empty, the
time for the arrival of the first charge carrier from the left or
from the right is called theresidual interarrival time, de-
notedDL* or DR* @2#.

The times thatL orR charge carriers spend in the channel
~i.e., charges that entered the channel from the left or right!
are calledfull-channel times, denoted genericallyFL andFR .
They are assumed to be~generally different! IID random
variables.FLL denotes the full channel times of thoseL
charge carriers that exit on the left;FLR denotes the full
channel times of the otherL charge carriers, namely, those
that exit on the right.FRL andFRR are similarly defined. If
observation starts some time after a charge carrier has en-
tered the channel, but before it leaves, the~remaining! wait-
ing times of charge carriers in the channel are calledresidual
full-channel times Fi j* ~i5L,R; j5L,R!.

We assume, for the sake of simplicity, that the waiting
process is renewed when the channel empties. The renewal
assumption is justified if, for example, the waiting times
have exponential distributions@10#. It is also justified if the
initial state of the reservoir is the same after each charge
carrier leaves the channel. The initial state is always the
same if the population of charge carriers equilibrates very
quickly after a charge carrier leaves the channel; that is to
say, the equilibration time of the population is much less
than the time the charge carrier spent in the channel, its
full-channel time.

The empty- and full-channel times come in pairs. After
every full-channel time the channel empties; therefore, each
Ei is followed by aFi j and after eachFi j comes anEk . A
typical realization of time intervals is

$FLR* ,EL
1,FLR

2 ,EL
3,FLL

4 ,ER
5,FRL

6 ,ER
7,FRR

8 ,...%. ~2.1!

In this realization, observation began att50, when the chan-
nel was already occupied, namely, by a charge carrier that
had entered on the left and that will exit on the right. Events
in this realization occur at timest0 ,t1 ,..., specifically,

t05FLR* , t15FLR* 1EL
1, t25t11FLR

2 , ~2.2!

and so on.
We define the probability distribution of the empty chan-

nel timeEi as the joint probability

Pr$Ei,t%5Pr$D i,t,D i,D i c%5Wi~ t ! ~ i5L,R!,
~2.3!

where the complementary indexi c is defined by

i c5 H R if i5L
L if i5R.

This notation describes the joint probability that ani charge
carrier arrives before ani c charge carrier in the competition
for an empty channel and this occurs before timet. The
comma in Eq.~2.3! is a logicaland. The joint probability
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distribution functionWi(t) can be expressed explicitly in
terms of the probability densitiesr i(t) and r i c(t) of the in-
terarrival timesDi andD i c, respectively. SinceDi andD i c are
assumed independent, their joint probability density function
~PDF!, which is the PDF ofEi , is r i(x)r i c(y) and then

Wi~ t !5Ex,t
x,y

E r i~x!r i c~y!dx dy5E
0

t

dxE
x

`

dy ri~x!r i c~y!.

~2.4!

Setting

wi~ t !5Wi8~ t ! ~ i5L,R!,

we find, from Eq.~2.4!, that

wi~ t !5r i~x!E
t

`

r i c~y!dy5r i~ t !F12E
0

t

r i c~y!dyG .
~2.5!

The probability that ani charge carrier arrives before ani c

charge carrier in the competition for an empty channel is

P~ i ![Wi~`!5Pr$D i,D i c%. ~2.6!

The functionsWi(t), the probability distributions of the
empty channel timesEi , are not proper distributions but
ratherdefective distributions@andwi(t) aredefective densi-
ties# ~see@10#, pp. 115 and 374! because they are not nor-
malized to 1@see Eq.~2.6!#; rather they are normalized to-
gether, collectively remedying each other’s individual defect

WL~`!1WR~`!51. ~2.7!

Defective distributions often arise in physical problems with
flux at the boundaries, e.g., stochastic problems in which part
or all of the boundaries are absorbing~see@2#, pp. 222 and
234!.

We denote byŵi(p) the Laplace transform ofwi(t). Thus
Eq. ~2.6! is equivalent to

P~ i !5ŵi~0! ~2.8!

and Eq.~2.7! is equivalent to

ŵL~0!1ŵR~0!51.

The defective mean time for ani charge carrier to arrive at
an empty channel after it has emptied is

^Ei&52
d

dp
ŵL~p!U

p50

52ŵi8~0! ~2.9!

and the mean waiting time forany charge carrier is

^tw&52ŵL8~0!2ŵR8 ~0!. ~2.10!

For example, ifDL andDR have exponential distributions
with ratesaL andaR , that is,

Pr$D i,t%512e2a i t ~ i5L,R; t.0!, ~2.11!

then

wi~ t !5a ie
2~aL1aR!t, ŵi~p!5

a i

aL1aR1p
. ~2.12!

In this case

P~ i !5ŵi~0!5
a i

aL1aR
, 2ŵi8~0!5

a i

~aL1aR!2
.

~2.13!

In a special case, where charge carriers arrive at the chan-
nel by diffusion from the surrounding left and right baths
~which form the reservoirs of our model!, @11–13# show that

a i52pr iDiRi , ~2.14!

where the charge carrier concentration in the bath on sidei is
ri , the diffusion coefficient isDi , andRi is the radius of the
channel. Note that in this case the interarrival timeDL de-
pends on the concentrationrL , while the empty-channel time
EL depends on both concentrationsrL andrR .

Similarly, we denote byQLR(t) the joint conditional
probability that a charge carrier exits on the right before time
t, given that it entered the channel on the left. Thusqi j (t)
5Qi j8 (t) is the defective density function of the full channel
time Fi j and q̂iL(0)1q̂iR(0)51. In particular,
q̂i j (0)5Qi j (`) is the probability that an charge carrier that
entered the channel on sidei exits on sidej . We denote this
probability byP( j u i ), that is,

q̂i j ~0!5P~ j u i !. ~2.15!

The defective mean2q̂LL8 (0) is the mean time a charge car-
rier ~that enters the channel on the left and exits on the left!
spends in the channel. Thus the first two moments of the
full-channel time of ani charge carrier are given by

^Fi&52q̂i i8 ~0!2q̂i i c8 ~0!,

^Fi
2&5q̂i i9 ~0!1q̂i i c9 ~0!,

^Fii c&52q̂i i c8 ~0! ~2.16!

and the mean time a charge carrier spends in the channel is

^tF&5P~L !^FL&1P~R!^FR&. ~2.17!

We define the mean renewal time

^tP&5^tw&1^tF&. ~2.18!

For example, if full-channel times are exponentially distrib-
uted with the four ratesgi j ,

q̂i j ~p!5
g i j

g iL1g iR1p
, P~ i u i c!5

g i i c

g iL1g iR
,

~2.19!

^Fi&5
1

g iL1g iR
, ^Fii c&5

g i i c

~g iL1g iR!2
.

The probabilitiesP( i u j ) and the mean full-channel times
can be calculated once the physical system or model that
defines them is specified. For a model of diffusion as a
chemical reaction, Ref.@6# calculates both the probabilities
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and the mean full-channel times. In an overdamped chemical
reaction, the probabilities are given by

P~ i u i c!5A2pkT
eF~ i c!/kT

*L
Rg~x!eF~x!/kTdx

, ~2.20!

wherek is Boltzmann’s constant,T is the absolute tempera-
ture,F(x) is the electric potential in the channel,g(x) is the
~displacement dependent! friction, and the reaction region is
located in the intervalL,x,R. In particular,

P~RuL !

P~LuR!
5e2DF/kT, ~2.21!

whereDF5F(L)2F(R) is the potential difference across
the reaction region.

The measuring device as a counter

The measuring device is modeled as an ideal counter of
discrete charge, placed at the right end of the channel. It
counts~a! anLR charge carrier as 0 when it enters and as21
when it exits the channel,~b! anLL charge carrier as 0 both
when it enters and when it exits because anLL charge carrier
does not reach the counter,~c! anRL charge carrier as11
when it enters the channel and as 0 when it exits, and~d! an
RRcharge carrier twice, once as11 when it enters the chan-
nel and again, as21, when it departs. This particular model
reflects the properties of the electrode in patch clamp mea-
surements of biological channels@7#. Our calculations extend
easily to include other configurations of the counter, e.g.,
whereLL trajectories are also counted.

The counting process in the realization Eq.~2.1! is shown
in Fig. 1. Counts occur at timest0 ,t1 ,t2 , . . . @see Eq.~2.2!#.

To calculate the statistical properties of the current, we
construct a cumulative counting processh(t). The consecu-
tive ~random! times when an arrival or a departure occur are
denotedt i . The cumulative counth(t) changes at timest i by
1, 21, or 0, according to the recording of the counter.

The current is given by

I ~ t ![
dh~ t !

dt
5(

i50

`

u id~ t2t i !, ~2.22!

where the ‘‘counting function’’ui can assume the three val-
ues

u i5H 0 if t i2t i215EL , FLL , or FRL

1 if t i2t i215ER

21 if t i2t i215FRR or FLR .
~2.23!

If the charge carried by each particle is11, the processI (t)
is the current flowing through the channel.

The unidirectional currents are given by

^I i i c&[
ŵi~0!q̂i i c~0!

^tP&
5
P~ i !P~ i cu i !

^tP&
~2.24!

and the net mean current is given by

^I &5^I RL&2^I LR&, ~2.25!

where the mean timêtp& is given in Eq.~2.18! above. Equa-
tion ~2.24! is a straightforward consequence of the calcula-
tions of Sec. III. This expression can be understood as fol-
lows. The expression 1/^tP& is the total number of renewals
per unit time and the numerator in Eq.~2.24! represents the
probability of counting ani i c charge carrier. Thus their prod-
uct is the unidirectional current.

If the interarrival times are exponentially distributed, with
rates ai @see Eq.~2.11!#, then the unidirectional currents
~2.24! are given by

^I i i c&5
a iP~ i cu i !

11aL^FL&1aR^FR&
. ~2.26!

Note that the dependence of the unidirectional currents on
microscopical times is different from that in classical shot
noise theory, even if the unidirectional currents contain only
trans trajectories.

FIG. 1. Counting processh~t! for the realiza-
tion ~2.1!.
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The ratio of unidirectional fluxes has been very useful in
some applications@7#. Equations~2.14!, ~2.21!, and ~2.26!
imply that the Ussing flux ratio is

^I LR&

^I RL&
5

aLP~RuL !

aRP~LuR!
5

rLDLRL

rRDRRR
e2DF/kT,

as predicted by the Nernst-Planck equation@7#.

III. THE SPECTRAL DENSITY

We consider the case where the fluctuating current
through the channelI5I (t) is a stationary stochastic pro-
cess. The spectral density ofI (t) is related to the spectral
density ofI (t)2^I & by the relation@4#

S~ I ,v!5S~ I2^I &,v!14p^I &2d~v!. ~3.1!

For vÞ0, we haveS(I ,v)5S(I2^I &,v). This, together
with the mean value of the current^I & ~2.25!, gives the spec-
tral density of the process for allv. The intensity of the
current fluctuations, denotedK, is a useful property of the
current; it is defined by@4#, p. 23, Eq.~2.13!, and gives the
limiting low-frequency power of the currentI (t) once it is
made zero mean by subtracting the average current^I &

K[ 1
2 lim

v→0
S~ I ,v!5 1

2 lim
v→0

S~ I2^I &,v!. ~3.2!

We now consider the Laplace transform of the process
I (t),

L~ I ,p![E
0

`

I ~ t !exp~2pt!dt. ~3.3!

The spectral density of a stationary process can be calculated
from its Laplace transform@see@4#, p. 27, Eq.~2.27!#. For
the stationary processI (t), the spectral density is given by

S~ I ,v!52 lim
e→0

e K UL S I , e
2

2 iv DU2L , ~3.4!

where the Laplace transform of the current Eq.~2.22! is
given by

L~ I ,p!5(
i50

`

u iexp~2pti !. ~3.5!

Hence

uL~ I ,p!u25(
i50

`

u iexp~2pti !(
k50

`

ukexp~2 p̄tk!

5S01S11S2 , ~3.6!

where

S0[(
i50

`

u i
2exp@2~p1 p̄!t i #, ~3.7!

S1[(
i50

`

(
k5 i11

`

u iexp~2pti !ukexp~2 p̄tk!

5(
i50

`

(
l51

`

u iexp~2pti !u i1 lexp~2 p̄t i1 l !, ~3.8!

S25S̄1 , ~3.9!

where p̄ and S̄1 mean complex conjugates. As shown be-
low, S0 produces a frequency-independent term in the spec-
tral density ~i.e., white noise!, whereasS1 contributes a
frequency-dependent component of noise in the spectral den-
sity. We now proceed to calculate^uL(I ,p)u2&, first calculat-
ing ^S0&.

A. Calculation of ŠS0‹

We first consider in detail the case when the channel is
occupied att50. The time interval betweent50 and the
time it empties is the residualFi j* . Setting e[p
1 p̄52 Re(p), we rewrite Eq.~3.7! as

^S0&5(
i50

`

^u i
2exp~2et i !&

5^u0
2exp~2et0!&

1^exp~2et0!&(
i51

`

^u i
2exp@2e~ t i2t0!#&.

~3.10!

The term^exp~2et0!& can be factored from the sum because
t0 is statistically independent of the later time intervals.

The main part of the calculation is to determine the ex-
pectation

^u i
2exp@2e~ t i2t0!#&. ~3.11!

To exploit the fact thatEi andFi j come in pairs, consider
separately the case wherei is odd or even. Att50 the chan-
nel is occupied; hence wheni is odd ~even!, the last time
interval that determines the counting functionui must be a
waiting time ~full-channel time!.

For i52n, n51,2, . . . , wehave

^u2n
2 exp@2e~ t2n2t0!#&5^exp@2e~ t2n222t0!#&

3^exp@2e~ t2n2t2n22!#u2n
2 &

andu2n is determined by a full-channel time. In this expres-
sion, we used the fact that the last two time intervals are
statistically independent of the previous 2n22 time inter-
vals. For the further calculation ofu2n, we need consider
only full-channel times of typeRR andLR, since for other
full-channel timesu2n50. Using the identity Eq.~7.1! of
Appendix A, we can write the expression~3.11! for i52n in
terms of the Laplace transform of the defective density func-
tions ŵj (p) and q̂i j (p) as

^exp@2e~ t2n2t0!#&5Cn~e!, ~3.12!
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where the moment generating function of the renewal period
is

C~e![ŵL~e!@ q̂LL~e!1q̂LR~e!#1ŵR~e!@ q̂RL~e!1q̂LR~e!#.

~3.13!

Since in this caseu 2n
2 51,

^u2n
2 exp@2e~ t2n2t0!#&5Cn21~e!@ŵR~e!q̂RR~e!

1ŵL~e!q̂LR~e!#. ~3.14!

A similar calculation is carried out for the case wherei is
odd. Here the last interval is a waiting time and we get a
contribution only from timesER . Summing up all terms ap-
pearing in Eq.~3.10!, we get

^S0&5^u0
2exp~2et0!&1^exp~2et0!&

3
ŵR~e!1ŵR~e!q̂RR~e!1ŵL~e!q̂LR~e!

12C~e!
.

~3.15!

Note that

^tP&[2C8~0!52 (
i5L,R

$ŵi8~0!1ŵi~0!@ q̂i i c8 ~0!1q̂i i8 ~0!#%

5^tw&1^tF&, ~3.16!

where^tw& is mean waiting time~2.10! and^tF& is the mean
full-channel time, weighted by the probabilities of winning
the empty channel, given in Eq.~2.17! @see Eq.~2.18!#. Simi-
larly,

^tP
2 &[C9~0!. ~3.17!

The second moment^t P
2 & depends on the second moments of

the microscopic times.

B. Calculation of ŠS1‹

First, we rewritê S1& as

^S1&5^u0exp~2et0!&(
l51

`

^u lexp@2 p̄~ t l2t0!#&

1^exp~2et0!&(
i51

`

(
l51

`

^u iexp@2p~ t i2t0!#u i1 l

3exp@2 p̄~ t i1 l2t0!#&. ~3.18!

It is shown below that the only contribution to the spectral
density comes from the second term in Eq.~3.18!. We there-
fore define

^S1
1 &[(

i51

`

(
l51

`

^u iexp@2p~ t i2t0!#u i1 l

3exp@2 p̄~ t i1 l2t0!#&,
~3.19!

^S1

u0&[^u0exp~2et0!&(
l51

`

^u l exp@2 p̄~ t l2t0!#&.

To compute^S1
1 & we must first calculate the correlation

function, defined by

C~ i ,i1 l ![^u iexp@2p~ t i2t0!#u i1 l exp@2 p̄~ t i1 l2t0!#&.

~3.20!

1. Calculation ofC„ i ,i1 l …

To calculate the correlation function, it is convenient to
consider four possibilities:~i! l is even andi is odd,~ii ! l is
odd andi is even,~iii ! l andi are even, and~iv! both l andi
are odd. For each case we must consider all the different
values that the counting functionsui andui1 l can assume.

Consider in some detail the case whenboth l and i are
even. Bothui andui1 l , appearing in~3.20!, are determined
by a full-channel time~recall that at t 0

1 the channel is
empty!. We partition thei1 l intervals into four parts,~i! the
first i22 intervals,~ii ! the pairi21 andi , ~iii ! the nextl22
time intervals, and~iv! the pair i1 l21 and i1 l , because
each part is statistically independent of all other parts. We
therefore get

C~ i is even, i1 l is even!

5^exp@2e~ t i222t0!#&@2ŵL~e!q̂LR~e!

2ŵR~e!q̂RR~e!] ^exp@2 p̄~ t l222t0!#&

3@2ŵL~ p̄!q̂LR~ p̄!2ŵR~ p̄!q̂RR~ p̄!#. ~3.21!

Note that there is no contribution from the terms that contain
LL and RL, because thenui50 and ui1 l50. These terms
describe the events where the particle exits from the left-
hand side of the channel and hence is not counted by the
counter on the right-hand side of the channel.

For i even andl odd, we determineui and ui1 l from a
full-channel time and a waiting time, respectively. In this
case, we have

C~ i is even, i1 l is odd!

5^exp@2e~ t i222t0!#&@2ŵL~e!q̂LR~e!

2ŵR~e!q̂RR~e!] ^exp@2 p̄~ t l212t0!#&ŵR~ p̄!.
~3.22!
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For i odd andl even, we have

C~ i is odd, i1 l is odd!

5^exp@2e~ t i212t0!#&@ŵR~e!q̂RL~ p̄!

1ŵR~e!q̂RR~ p̄!] ^exp@2 p̄~ t l222t0!#&ŵR~ p̄!.
~3.23!

Here the sign ofui and ui1 l is determined by the waiting
times.

For i odd andl.1 and odd, we have

C~ i is odd, i1 l is even, l.1!

5^exp@2e~ t i212t0!#&@ŵR~e!q̂RL~ p̄!

1ŵR~e!q̂RR~ p̄!] ^exp@2 p̄~ t l232t0!#&

3@2ŵL~ p̄!q̂LR~ p̄!2ŵR~ p̄!q̂RR~ p̄!#. ~3.24!

Hereui is determined by a waiting time, whileui1 l is deter-
mined by a full channel time. Fori odd and l51, we have

C~ i is odd, l51!5^exp@2e~ t i212t0!#&

3@2ŵR~e!q̂RR~ p̄!#.
~3.25!

2. Calculation of kS1
1 l

We now find the exact expression for^S1
1 & by summing

the correlation functionsC( i ,i1 l ) ~3.21!–~3.25!. We use the
identity

^S1
1 &5(

i51

`

(
l51

`

C„2i ,2~ i1 l !…1(
i51

`

(
l50

`

C„2i ,2~ i1 l !11…

1(
i50

`

(
l51

`

C„2i11,2~ i1 l !11…

1(
i50

`

(
l50

`

C„2i11,2~ i1 l11!… ~3.26!

and Eqs.~3.12! and ~3.13! to get

^S1
1 &5

1

12C~e! H 2ŵR~e!q̂RR~ p̄!1
1

12C~ p̄!

3@G~e,p̄!1H~e!#@ŵR~ p̄!1H~ p̄!#J , ~3.27!

where we have defined

G~e,p![ŵR~e!@ q̂RL~p!1q̂RR~p!#,
~3.28!

H~p![2ŵL~p!q̂LR~p!2ŵR~p!q̂RR~p!.

C. The limit e˜0

The spectral density is now determined from Eq.~3.4!.
According to Eqs.~3.6! and ~3.9!,

S~ I ,v!52 lim
e→0

e K S0S e
2

2 iv D L
14 lim

e→0
eReK S1S e

2
2 iv D L . ~3.29!

We consider each term separately. First, from Eqs.~3.15!
and ~3.16!,

2 lim
e→0

e^S0&5
2

^tP&
@ŵR~0!1ŵR~0!q̂RR~0!1ŵL~0!q̂LR~0!#.

~3.30!

Note that in this calculation, the factor^exp~2et0!& has
been omitted. In the limite→0 that factor is the probability
that the channel is initially occupied, as was assumed in the
calculations above. Similar calculations, conditioned on an
initially empty channel, give the same result but with the
factor lime→0^exp~2et0!& replaced by the probability that the
channel is initially empty. It follows that the sum of these
two cases is independent of this factor. Thus, in general, it
can be set equal to 1.

It can be seen that lime→0e^S1

u0&50. This is so only if
vÞ0. Our calculation is restricted to this case. Atv50 the
power spectral density contains ad ~v! multiplied by ^I &2

@see Eq.~3.1!#.
The next term is

2 lim
e→0

e^S1
1 &5

2

^tP& H 2ŵR~0!q̂RR~ iv!

1
@G~0,iv!1H~0!#@H~ iv!1ŵR~ iv!#

12C~ iv! J .
~3.31!

Equation~3.31! is related to the exact expression needed for
the calculation of the spectral density,

lim
e→0

e^S1&5 lim
e→0

e^exp~2t0e!&^S1
1 &. ~3.32!

We can now collect all the different terms and get the
main result so far

S~ I ,v!5
2

^tP&
@ŵR~0!1ŵR~0!q̂RR~0!1ŵL~0!q̂LR~0!#

1
4

^tP&
ReF2ŵR~0!q̂RR~ iv!1

F~ iv!

12C~ iv!G .
~3.33!

Here we have used the notation

F~p![@G~0,p!1H~0!#@H~p!1ŵR~p!#. ~3.34!

Recall that the functionsG(0,p) andH(p) have been de-
fined in ~3.28! and ^tP& in Eq. ~3.16!.

IV. ASYMPTOTIC PROPERTIES OF THE SPECTRAL
DENSITY

First, we consider the limitv→0, because in most experi-
mental situations it is easier to measure low frequencies ac-
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curately than high. This limit corresponds to the long-time
asymptotics of the autocorrelation function of the current
fluctuations. Taking the limitv→0 in Eq. ~3.33!, we get,
from Eq. ~3.2!,

K5^I LR&1^I RL&1
^tP
2 &^I &2

^tP&
1
2^I &

^tP&
@XRL2XLR#,

~4.1!

where

Xii c[ŵi8~0!q̂i i c~0!1ŵi~0!

52^Ei&P~ i cu i !2P~ i !^Fii c&, ~4.2!

the mean unidirectional and net currents^I i i c& and ^I & are
given by Eqs.~2.24! and~2.25!, ^tP& is defined in Eq.~3.16!,
and ^t P

2 & is defined in Eq.~3.17!. Note that Eq.~4.1! adds
two terms to Eq.~1.4!. They reflect the dependence intro-
duced by single occupancy.

The intensity appears to be a quadratic function of the
total current flowing through the channel. However, the
mean current in Eq.~4.1! is not an independent variable;
rather bothK and^I & are functions of the microscopic times,
which in turn are functions of the physical variables that
determine these times. In biological applications these may
be concentrations and voltage across the channel. Thus Eqs.
~2.25! and ~4.1! give a nonlinear parametric dependence be-
tween the intensity and the mean current.

The expression of the intensity is symmetric in the sense
that L andR are interchangeable. Changing the location of
the counter does not alter the spectral density atv→0.

Note that the prefactor of̂I &2 in Eq. ~4.1! depends on
second moments of the waiting and full-channel times and
thus is more dependent on the details of the probability dis-
tributions of the microscopical times than the other terms in
Eq. ~4.1!. In the particular case when the waiting times are
negligible and so the channel is almost always occupied Eq.
~4.1! simplifies significantly. Forŵi8(0),ŵ9(0)→0, we ob-
tain, from Eqs.~4.1! and ~4.2!,

K5^I LR&1^I RL&1
^tF

2&^I &2

^tF&

2
2^I &

^tF&
@P~R!^FRL&2P~L !^FLR&#, ~4.3!

becausêtw&→0 in Eq. ~2.18!. This is a particularly useful
equation becauseP( i ) is the probability that a charge enters
from side i and can be independent of the dynamics of ar-
rival.

The short-time behavior of the autocorrelation function
corresponds to the asymptotic behavior ofS(I ,v) for large
v. For v→`, we get, using the normalization
q̂RR(0)1q̂RL(0)51,

lim
v→`

S~ I ,v!5
2

^tP&
@ŵR~0!1ŵR~0!q̂RR~0!1ŵL~0!q̂LR~0!#

5
2

^tP&
@P~R!1P~R!P~RuR!1P~L !P~RuL !#

5
2

^tP&
@2P~R!P~RuR!1P~R!P~LuR!

1P~L !P~RuL !#. ~4.4!

In contrast to the casev→0, this result is sensitive to the
location of the counter, that is to say, the side on which
current is measured. The reason is that at high frequencies
the counter is sensitive to the correlations that occur on the
microscopic time scale. A factor of 2 multiplies theRR term,
hence theRR terms contribute twice as much noise as the
RL andLR trajectories. This is expected since theRR terms
are counted twice, as they enter the channel and as they exit.
The LL trajectories contribute to this expression only
through the dependence of the mean pair time^tP& on the
full channel times.

A. Saturation

As the interarrival time on one side, sayL, becomes
shorter, the mean unidirectional current^I LR& increases and
saturates. From Eq.~2.26! we see that the condition for this
saturation is

aL^FL&@11aR^FR&

and the saturation value is

^I LR&5
P~RuL !

^FL&
. ~4.5!

The mean unidirectional current^I RL& decreases to zero as
aL increases indefinitely so that the net mean current^I &
saturates at the value ~4.5! when ^I RL&!^I LR&
5P(RuL)/^FL&. Equation~2.24! then implies the additional
condition

aRP~LuR!!aLP~LuR!.

If charges arrive by diffusion, the rateaL varies as a func-
tion of concentration@see~2.14!#. Thus the current saturates
as concentration increases on one side.

In this limit, we recover classical shot noise. Indeed, the
net mean current iŝI LR& @as given in Eq.~4.5!#, which is the
mean current of classical shot noise with interarrival timetSN
whose mean value is

^tSN&5
^FL&
P~RuL !

@see Eq.~1.2!#. This is shot noise with nonexponential inter-
arrival times.

In this limit Eq. ~4.1! implies thatK becomes independent
of aL and reaches saturation as well,

lim
aL→`

K5
P~RuL !

^FL&
F11

P~RuL !^FL
2&

^FL&
2 22

^FLR&
^FL&

G , ~4.6!
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and is thus independent of all arrival rates. That is, the in-
tensity, as a function of concentration on one side of the
channel, saturates at the value given in Eq.~4.6!. It can be
written as~1.3!

K5
^tSN

2 &2^tSN&
2

^tSN&
3 ,

where

^tSN
2 &5

P~RuL !^FL
2&12^FL&^FLL&
P2~RuL !

.

A further simplification is obtained if nocis trajectories
originate from L. Then q̂LL(x)50, q̂LR~0!51, and
^FLR&5^FL&, so that charge carriers flow only from left to
right. Equations~4.5! and ~4.6! then simplify to

^I LR&5
1

^FL&
~4.7!

and

lim
aL→`

K5
^FL

2&2^FL&
2

^FL&
3 , ~4.8!

respectively@2#. For the special case where the full-channel
times are described by normalized exponential distributions,
we use

q̂LR~p!5
gLR

gLR1p
~4.9!

to get 1/̂FL&5gLR , so that

^I LR&5gLR

and

lim
aL→`

K5gLR5^I LR&, ~4.10!

which is the classical shot noise relation~1.1!.

B. Noise intensity at zero net current

If the mean net current vanishes, the intensity depends
only on the mean unidirectional currents as in Eq.~1.4!. The
mean unidirectional currents, in turn, do not depend on
higher-order moments of the timesEi and Fi j . Thus the
intensityK does not depend on higher-order moments of the
waiting and full-channel times if̂I &50.

In systems of electrochemistry and membrane biology the
equilibrium casê I &50 occurs when the potential across the
system has a particular value. We now determine the noise
intensity in this situation. In this case, by Eq.~2.25!,

ŵL~0!q̂LR~0!5ŵR~0!q̂RL~0! ~4.11!

or

P~L !P~RuL !5P~R!P~LuR!.

When the arrival times are assumed to be described by ex-
ponential distributions, condition~4.11! becomes

aLP~RuL !5aRP~LuR! ~4.12!

or, using the relation Eq.~2.21!,

aR5aLe
2DF/kT. ~4.13!

Equation ~4.13! is called the Nernst equation in physical
chemistry@14# andDF is thereversal potential~at which the
current is zero!. Using Eqs.~2.20! and~4.13! in Eq. ~4.1!, we
find that at the reversal potential the intensity is given by

K5
2aLP~RuL !

11aL@^FL&1^FR&e2DF/kT#
. ~4.14!

If aL[ ^FL&1^FL&e
2DF/kT]!1, Eq. ~4.14! reduces to,

K52aLP~RuL !

and if aL[ ^FL&1^FL&e
2DF/kT]@1, the intensity saturates at

K5
2P~RuL !

^FL&1^FR&e2DF/kT . ~4.15!

When the mean current is zero, as described in Eq.~2.25!,
the fluctuations cannot be described by fluctuations in ionic
conductance, as defined in membrane physiology@15,16,7#,
because at the reversal potential conductance does not pro-
duce current.

AlthoughK in Eq. ~4.15! appears independent of concen-
tration, it should be borne in mind that the potentialF(x),
the mean full channel timeŝFL& and ^FR&, and the prob-
ability P(RuL) depend on the concentrations@17#. Nonethe-
less, it is an experimental fact that in many biological chan-
nels the reversal potentialDF in Eq. ~4.13! does not change
noticeably with concentrations ifaL/aR is held constant@see
Eq. ~2.14!# @7#.

C. The shape of the spectral density in symmetric systems

To investigate the shape of the power spectral density
functionS(I ,v), we consider a simplified idealized symmet-
ric system in which

ŵR~p!5ŵL~p![ŵ~p!, ŵ~0!5 1
2 ,

q̂LL~p!5q̂RR~p![q̂cis~p!,
~4.16!

q̂LR~p!5q̂RL~p![q̂trans~p!,

q̂cis~0!1q̂trans~0!51.

These conditions can occur if the concentrations of charge
carriers are the same on both sides of the channel@see Eq.
~2.14!# and the potential in the channel is symmetric, that is,
if the channel is located between the pointsx52d andd,
thenF(2x)5F(x). In this casê I &50. This does not mean
that the unidirectional currents vanish; indeed, these
currents are the source of fluctuations. Defining
Q̂( iv)[q̂cis( iv)1q̂trans( iv) and using the result Eq.
~3.33!, we find that in this model the spectral density is
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S~ I ,v!5
2

^tP& H 11ReF2q̂cis~ iv!

2
@Q̂~ iv!21#2ŵ~ iv!

122ŵ~ iv!Q̂~ iv!
G J . ~4.17!

The two limitsv→0 andv→` are given by

lim
v→0

S~ I ,v!5
2

^tP&
q̂trans~0!< lim

v→`
S~ I ,v!5

2

^tP&
.

~4.18!

We now consider in some detail the case whenv is small.
We write

S~ I ,v!5
2

^tP&
q̂trans~0!1

v2

^tP
2 &

S21o~v3!, ~4.19!

where

S25^tP&q̂cis9 ~0!2
Q̂8~0!

2^tP&
$@4ŵ8~0!1Q̂8~0!#Q̂9~0!

12Q̂8~0!@4ŵ82~0!2ŵ9~0!#%.

The sign ofS2 determines whether the spectral density is a
decreasing or increasing function ofv nearv50. We con-

sider first the case when the arrival times are exponentially
distributed. For this case 4v̂exp82 (0)2v̂exp9 (0)50; hence

S2
exp5^tP&q̂9~0!cis2

Q̂8~0!

2^tP&
@4ŵexp8 ~0!1Q̂8~0!#Q̂9~0!.

~4.20!

This expression shows that the behavior of the spectral den-
sity changes whenS2

exp changes sign. The first term on the
right-hand side of Eq.~4.20! is always positive, whereas the
second is negative. Ifcis trajectories are not dominant in the
process~i.e., the first term can be neglected!, the spectral
density is a decreasing function ofv near tov50.

In the particular case where all processes, including the
full-channel times, are exponentially distributed the Laplace
transforms of the defective densities are

q̂cis~p!5
gc

g1p
, q̂trans~p!5

g t

g1p
, ŵi~p!5

a0

2a01p
,

~4.21!

whereg5gc1g t is the rate that determines the full-channel
time. For this case

^tP&5
1

2a0
1
1

g
.

A simple calculation gives the spectral density

S~ I ,v!5
2

^tP& H v41v2~2g212a0
212a0g2gcg!1g~g12a0!

2~g2gc!

@~g12a0!
21v2#@g21v2# J . ~4.22!

Two types of behavior are observed. When thecis trajecto-
ries are dominant~i.e.,g.gc!, the spectral density is a mono-
tonically increasing function ofv ~for positivev!. When the
trans trajectories become dominant, the spectral density is
not monotonic; in fact, it has one extremum, a minimum in
Fig. 2. For smallv Eq. ~4.22! gives

S~ I ,v!5
4a0~g2gc!

~2a01g!2
1v2

4a0

~2a01g!3g2

3@gc~2a01g!222a0g~a01g!#1o~v3!.

As gc traverses the critical value

gc
critical[

2a0g~a01g!

~2a01g!2
~4.23!

a transition occurs from a decreasing to an increasing spec-
tral density nearv50.

Next, we consider another symmetrical case where the
defective distribution functions describing the full-channel
times are insensitive to the initial location of the particle.
This means that once the particle has entered the channel the
direction from which it entered is forgotten. This situation
occurs, for example, if there are potential wells at the en-
trances to the channel. For this case, and when all defective

distributions are exponentially distributed, memory plays no
role. This case is characterized by

q̂LL~p!5q̂RL~p![q̂L~p!, q̂RR~p!5q̂LR~p![q̂R~p!.

~4.24!

The above assumption means that once the particle has en-
tered the channel, it~and the environment! instantaneously
forgets the path in phase space it had followed prior to the
entrance of the charge carrier into the channel. This can oc-
cur, for example, if the charge carrier is trapped in a deep
potential well in which thermalization is reached very
quickly.

Under the above assumptions, the following four func-
tions determine the properties of the spectral density:

q̂i~p!5
g i

g1p
, ŵi~p!5

a i

a1p
. ~4.25!

Hereai is the rate of arrival from the sidei andgj is the rate
with which a particle exit the channel on sidej . We denote
g[gL1gR and a[aL1aR . The general result~3.33! re-
duces to
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S~ I ,v!5
2~ga r1ag r !

~g1a!
2
4~a r1g r !~g2a r1a2g r !

~a1g!@~a1g!21v2#
.

~4.26!

This spectral density is a combination of a white-noise term
and an inverted Lorenzian. Hence, for the case where both
cis and trans trajectories exist, the spectral density always
increases close tov50.

D. Intensity in a symmetric channel

The intensity varies in a complex way in an interacting
system like this even in the simplified case of a symmetric
channel. We assume that

q̂LR~p!5q̂RL~p!, q̂LL~p!5q̂RR~p!,

but the empty-channel times are not equal, that is,

ŵL~p!ÞŵR~p!.

The statistical properties of the empty-channel times are as-
sumed to be described by

ŵi~p!5
a i

a1p
,

wherea5aL1aR . For this case Eq.~4.1! is

K5A11A2^I &
2, A1[

aq̂LR~0!

11a^tch&
,

A2[
a^tch

2 &
11a^tch&

22^t trans&, ~4.27!

where

^tch&[2q̂LR8 ~0!2q̂LL8 ~0!, ^tch
2 &[q̂LR9 ~0!1q̂LL9 ~0!,

^t trans&[2
q̂LR8 ~0!

q̂LR~0!
.

Note than when varying bothaL and aR while keeping
aL1aR fixed, theK vs ^I & curve has the shape of a parabola.
WhenA2,0, the intensity achieves its maximum at^I &50.
Such behavior does not occur if the unidirectional fluxes are
independent. The graph of intensity vs mean current is
shown in Fig. 3. In Fig. 3 only the rate of arrivalaL is varied
while the other rates are kept constant. Note that the intensity
does not always increase withu^I &u. As ^I & changes from
positive to negative,K keeps decreasing~see explanation
below!. This is also the a feature of Eq.~1.4!. As discussed in
Sec. IV, the intensity saturates asaL→`. Note further that
the current saturates so that the graph cannot be extended
beyond a limiting value. WhenaL→` the physical interac-
tions and empty-channel times are not important. Even so,
our result does not reduce to generalized shot noise due to
the existence of thecis trajectories.

The case where the mean current^I & and channel times
are held fixed and the rates of arrivalaL andaR are varied is
shown in Fig. 4. It can be seen that the intensity of the
process always increases asa5aL1aR is increased. This
can be proved directly from Eq.~4.27!, for the more general
case where channel times are not assumed exponentially dis-
tributed. For exponentially distributed channel times, inten-
sity curves decrease witĥI & ~i.e.,A2,0!. When the ratea is
increased, the mean current^I & can either decrease or in-
crease. HenceK does not always increase when^I & is in-
creased~also see Fig. 3! becauseK reflects the total number
of events rather than the excess ofRL over LR charge car-
riers, i.e., the current.

E. RR trajectories only

Stratonovich@4# considers the case of the derivative of the
random telegraph signal@1#. This counter is analogous to
that for a channel with onlyRR trajectories, which occurs,
for example, if the left-hand side of the channel is blocked.
Then, only two normalized distribution functions are needed
to describe the channel,q̂RR(p)[q̂(p), P(RuR)51 and
ŵR(p)[ŵ(p), P(R)51. For this special case Eq.~3.33! re-
duces to

FIG. 2. ~a! Monotonic spectral density for exponential defective
densities~4.21! with a051, gc51, g t50 ~lower curve! anda051,
gc50.8, g t50.2. ~b! Nonmonotonic spectral density, witha051,
gc50.2,g t50.8 ~lower curve! anda051, gc51, g t50. d~v! is not
shown.

FIG. 3. Intensity vs mean current withq̂LR(p)5q̂RL(p)
5g t/(g t1gc1p), q̂LL(p)5q̂RR(p)5gc/(g t1gc1p), and ŵi(p)
5a i /(aL1aR1p). 0!aL,`, gc50.2, and g t50.8. aR is
shown in the figure.
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S~ I ,v!5
4

^tP&
ReH @12q̂~ iv!#@12ŵ~ iv!#

12ŵ~ iv!q̂~ iv! J . ~4.28!

In this casê tP&52q̂8(0)2ŵ8(0), that is, it is the sum of
the mean full-channel time and the mean waiting time. Our
result ~4.28! reproduces that in@4#.

V. THE CASE OF SEVERAL CHARGE CARRIER
SPECIES: A BIOLOGICAL APPLICATION

Consider the case where different kinds of charge carrier
species are kept at fixed concentrations on either side of the
channel. In this case there are several currents flowing
through the channel. This is the usual biological situation
and describes the natural function of many biological mem-
branes in nerve, muscle, and other cells@8,7#.

We restrict our calculation to the case of only two species,
both carrying identical charge. The full situation will be ana-
lyzed in a subsequent paper dealing with specific biological
experiments. We present the stochastic core here in the con-
text of our derivation and theory.

As in the previous calculation, the channel can be occu-
pied by at most one charge carrier at a time. In the two
species case, a typical sequence of time intervals is

$...;EL
1,FLR

1 ;...;EL
1,FLL

1 ;ER
2,FRL

2 ;...;ER
2,FRR

2 ;...%.

Here the upper index 1 or 2 identifies the charge carrier.
Because both charge carriers carry the same charge, the
counter is insensitive to the identity of the two particles. In
this case our previous definitions of the counting process can
be used for the multiple charge carrier case. The difference
between the one charge carrier case and the two charge car-
rier case are the additional waiting and full-channel times
that we consider below.

Four defective densitiesw i
b(t) ~b51,2! normalized by

(b51,2( i5L,Rŵ i
b~0!51, determine the waiting times. The

probability that a particle arrives fromi and is of typeb is
ŵ i

b~0!. The statistical properties of the full-channel times are
given by the defective distributionsq i j

b (t). In terms of the
Laplace transform the normalization of these functions is
(j5L,Rq̂ i j

b ~0!51. Therefore 12 functions describe the statis-
tical properties of the waiting and full-channel times.

The calculation carried out above for a single species is
now repeated for the case of two species. It does not impose
any special difficulties. In Appendix B we give the calcula-
tion of ^exp@2e(t2n2t0)#& for the multiple species case;
other parts of the calculation are straightforward. We there-
fore give the final result for this important case,

S~ I ,v!5
2

^tP& (
b51,2

@ŵR
b~0!1ŵR

b~0!q̂RR
b ~0!

1ŵL
b~0!q̂LR

b ~0!#1
4

^tP&

3ReF2 (
b51,2

ŵR
b~0!q̂RR

b ~ iv!1
F~ iv!

12C~ iv!G .
~5.1!

In this case

C~e!5 (
b51,2

(
i5L,R

ŵi
b~e!@ q̂iL

b ~e!1q̂iR
b ~e!#.

As in the case of a single species,^tP& andF( iv) are defined
by Eqs.~3.16! and ~3.34!, respectively. The functionsG~ !
andH~ !, which defineF(p), are given by

G~0,p!5 (
b51,2

ŵR
b~0!@ q̂RL

b ~p!1q̂RR
b ~p!#,

H~p!52 (
b51,2

ŵL
b~p!q̂LR

b ~p!2 (
b51,2

ŵR
b~p!q̂RR

b ~p!.

~5.2!

A generalization of~5.1! to the case where more than two
charge carrier species with identical charges can occupy the
channel is straightforward. Generalizations to cases where
charge carriers of different charges can occupy the channel
are also possible. In this case the counting functionui as-
sumes different values for different charge carriers.

If interarrival times are exponentially distributed with
ratesa i

1 ,a i
2 ( i5L,R), we have

ŵi
j~p!5

a i
j

(
i5L,R

(
j51,2

a i
j1p

~ i5L,R; j51,2!.

It follows that

^tP&52C8~0!5^tw&1^tF&, ~5.3!

where, as in Eqs.~2.10!–~2.15!,

FIG. 4. Intensity vs log~a! for ^I& constant. Defective densities
are given in the caption to Fig. 3. Heregc50.4 andg t51.4. When
^I&Þ0, a is bounded from below.
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^tw&5
1

(
i5L,R

(
j51,2

a i
j
, ^tF&5Pj~ i !^Fi

j&, ~5.4!

and

Pj~ i !5
a i
j

(
i5L,R

(
j51,2

a i
j

~ i5L,R; j51,2!. ~5.5!

The current is given, as in Eq.~2.26!, by

^I &5^I LR&2^I RL&, ~5.6!

where the unidirectional currents are given by

^I LR&5
aL
1P1~RuL !1aL

2P2~RuL !

D
,

^I RL&5
aR
1P1~LuR!1aR

2P2~LuR!

D
, ~5.7!

and

D511 (
i5L,R

(
j51,2

a i
j^Fi

j&. ~5.8!

For each species,Pj (RuL) and Pj (LuR) are given in the
appropriate version of Eq.~2.20!.

The noise intensity is given by Eq.~4.1! with ^tP&, ^I &,
^I LR&, and^I RL& given in Eqs.~5.3!–~5.7! and

Xii c52 (
j51,2

Pj~ i !@Pj~ i cu i !^tw&1^Fii c
j &# ~ i5L,R!,

~5.9!

wherePj ( i ) are given in Eq.~5.5!, Pj ( i cu i ) in the appropri-
ate version of Eq.~2.20!, and ^Fii c

j & are the mean time that
trans charge carriers of either species spend in the channel
~see@6#!. This analysis will be exploited in future work to
predict the power spectrum of noise observed in the presence
of several charge carrier species in biological channels.

VI. SUMMARY AND DISCUSSION

In summary, we have developed a theory of noise for a
single occupancy channel wherecis and trans trajectories
exist, given the statistics of the interarrival and full-channel
times. The latter times have to be determined from separate
theories. Some general features of the model, however, are
independent of the details of the statistics. These are satura-
tion, the nonlinearity in the dependence of intensity on mean
current, fluctuations at zero mean current, and so on.

Saturation of intensity and mean current is found. This is
due to the existence of two types of dynamics. When the
arrival time increases, the finite channel time will cause the
saturation and vice versa. The intensity and mean current
depend on the channel and arrival times. This results in a
general nonlinear parametric dependence between intensity
and mean current. The properties of the power spectral den-
sity atv→0 do not depend on the location of the measuring

device. Properties at high frequencies do.
The intensity of the noise in our model differs from that

given in Eq.~1.4! for two independent shot noises. It con-
tains additional terms that arise from the competition for the
single occupancy channel.

The two typical shapes~for the symmetrical-exponential
case! of the spectral density are monotonic and nonmono-
tonic. We have searched numerically for other shapes using
the general result Eq.~3.33!, assuming that exponential
distributions describe channel and arrival times. For
this case ~3.33! depends on a set of six rates
(aL ,aR ,gLR ,gLL ,gRL ,gRR). We looked at 10 000 ran-
domly chosen sets of interarrival and full-channel times.
Each of the rates was in the interval~0,1#. We have not found
in this limited search any qualitatively different shape other
than those presented here.

For the general caseK depends on six different probabil-
ity densities describing the waiting times and the full-
channel times. For the relatively simple case, when all pro-
cesses are exponential, the result is controlled by six
parameters. Our model does not reduce in this case to the
usual rate model for biological channels@9#. To see this, note
that the full-channel times are described in Eqs.~2.19! and
~4.9! by four ratesgi j ( i , j5L,R) that depend on the original
location of the particle. Only when the full-channel times do
not depend on the origin of the particle does our theory re-
duce to traditional rate theory of a singly occupied channel
@7#.

Our immediate goal in writing this paper was to describe
the shot noise through a single file biological channel. The
protein channels of biological membranes are a particularly
well studied and interesting single file system@7,8#. These
channel proteins have a hole down their middle that forms
the channel’s pore filled with a file of water molecules and
charge carriers, typically sodium, potassium, or chloride. The
hole is narrow enough to confer significant selectivity to the
system and only one charge carrier can occupy the narrow
region of the channel at a time. Because these channels regu-
late the movement of salts and charge across the membranes
of cells, they are responsible for much of the behavior of
many types of cells, whether nerve, muscle, cardiac, or epi-
thelial. Many drugs act on protein channels, directly or indi-
rectly, and they have been studied medically and biologically
for more than a century.

Measurements can be made from ionic channels one mol-
ecule at a time using the patch clamp method@18#. The mean
values of the current flow through such single channels can
be predicted@17# by self-consistent theories of diffusion in
an electric field akin to the drift diffusion equations of semi-
conductor ~and much other! physics. One of the striking
characteristics of single channels is the fluctuations in their
current and those fluctuations change dramatically when
slow charge carriers~e.g., blockers,@7#! are present. Al-
though the fluctuations~often called ‘‘open channel noise’’
or ‘‘open channel block’’! have been studied extensively in
Sigworth, Miller, and Yellen’s laboratories@15,19,20# and
elsewhere@16#, theoretical analysis has~for the most part!
used transition state theories that assume large barriers for
current flow@9#. Recently, we@6# have learned how to com-
pute the flux over barriers of any size or shape and how to
compute the statistics of the underlying charge movements,
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e.g., the first-passage time and contents of the channel, but
that theory did not predict the fluctuations in the current.
Here we extend the analysis to a single occupancy model of
a channel, relating the passage times~etc.! to the fluctuations
in current. In later papers, we plan to relate the passage times
to the structure of the channel and use the present results to
predict the fluctuations in current observed experimentally.
Theories of the mean current and theories of the fluctuating
current use almost the same parameters and so a theory of
the mean current should be able to predict the fluctuations,
with no ~additional! adjustable parameters, and it should be
able to predict the response to trace concentrations of slow
charge carriersof a range of concentrations and concentra-
tion gradientswith one or two additional parameters. Spe-
cific predictions of such a wide range of experimental behav-
ior provide a severe test of any theory and are our ultimate
goal.
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APPENDIX A: CALCULATION OF Šexp†2„t2n2t0…e‡‹

A sequence of 2n intervals consists of the following: ~i!
n waiting times for which there are~a! 0<k<n waiting
times of the typeL and~b! n2k waiting times of the typeR
and~ii ! n full-channel times out of which~a! 0< j<k are of
the LR type and k2 j are of the LL type and ~b!
0<m<n2k are of theRR type andn2k2m are of theRL
type. To determinêexp@2(t2n2t0)e#&, we partition the time
interval t2n2t0 into 2n subintervals. The averaging proce-
dure consists in integration over all time intervals, as well as
summing over all possible arrangements, as specified. We
obtain

^exp@2~ t2n2t0!e#&5^exp@2~E11F21E3••• !#e&.

HereEi andF j are empty- and full-channel times. Next, we
introduce the classes enumerated above and the correspond-

ing defective distribution functions defined previously in
Sec. II. Averaging over all possible sequence of time inter-
vals, we get

^exp@2~ t2n2t0!e#&5 (
k50

n

(
j50

k

(
m50

n2k S nkD ŵL
k~e!ŵR

n2k~e!

3S kj D q̂LRj ~e!q̂LL
k2 j~e!

3S n2k
m D q̂RRm ~e!q̂RL

n2k2m~e!. ~A1!

Using this expression it can be shown that

^exp@2~ t2n2t0!e#&5Cm~e!,

where

C~e!5 (
i5L,R

ŵi~e!@ q̂i i c~e!1q̂i i ~e!#. ~A2!

APPENDIX B: CALCULATION OF Šexp†2„t2n2t0…e‡‹
FOR TWO SPECIES

A sequence of 2n intervals consists of the following:~i! n
waiting times for which there are~a! 0< l 1<n waiting times
of type L1, ~b! 0< l 2<n2 l 1 waiting times of typeL2, ~c!
0<r 1<n2 l 12 l 2 waiting times of type R1, and ~d!
r 25n2 l 12 l 22r 1 waiting times of typeR2 and ~ii ! n full-
channel times, out of which~a! 0< j 1< l 1 are of typeLR1

and l 12 j 1 are of typeLL1, ~b! 0< j 2< l 2 are of typeLR2

type andl 22 j 2 are of typeLL2, ~c! 0<s1<r 1 are of type
RR1 and r 12s1 are of typeRL1, and ~d! 0<s2<r 2 are of
type RR2 and r 22s2 are of typeRL2. Using the same
method as in Appendix A, we get

^exp@2~ t2n2t0!e#&5Cn~e!,

whereC~e! is given in Eq.~5.2!.
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