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Bidirectional shot noise in a singly occupied channel

E. Barkail R. S. Eisenberg,and Z. Schuss
1school of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
2Department of Molecular Biophysics and Physiology, Rush Medical Center, 1750 West Harrison, Chicago, lllinois 60612
3School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
(Received 29 February 1996

We calculate the power spectrum of the noisy current in a narrow channel that admits one charge carrier at
a time from the leftL or right R reservoirs. The random positive and negative currents are produced by the
random arrival and departure of discrete charges at a measuring device on one side. The unidirectional currents
are not independent because the presence of one charge in the channel blocks the entrance of another. Four
classes of trajectories are possible: ttamstrajectoried R andRL andcis trajectoried L andRR. The power
spectrum of the total current is described by explicit formulas, depending only on the statistics of the interar-
rival times and times spent in the channel. These formulas generalize those ¢.ghoBchottky noise and
predict more complex behavior than the sum of the noises of the four types of trajectories, if they were
independent(i) the mean current and the intensity of fluctuations saturate as the arrival time on one side
decreases an(i ) the noise intensity depends nonlinearly on the mean net current. Explicit formulas are given
and special cases are analyzg#t1063-651X96)03808-1

PACS numbdss): 02.50.Ey, 05.60tw

[. INTRODUCTION current, the first flowing from left to right, r and the second
from right to leftl ;. , both defined to be positive. In this case
Shot noise is the noisy current produced by the randonthe net current is the different¢e= 15, — |, g and the intensity
arrival of identical discretéunit) charges at a measuring de- of the resulting noise is the sum
vice. The classical mathematical theory of shot noise as-
sumes that the interarrival times of charges are independent K={l g)+{lrL)- (1.4
identically distributed(IID) positive random variablefsl,2].
This is the main feature of classical shot noise theory. Moran other situations the unidirectional currents are not inde-
generalized theories allow some dependence between intgfendent and corrections are needed to Egd). For ex-
arrival times, but still require them to be identically distrib- ample, if the unidirectional currents have to move one charge
uted (see the generalized Campbell theorem on the meagt a time through a channel to reach the measuring device,
current in[3]). In these theories charge carriers are countedhe motion in one direction blocks the motion in the other, so
as they arrive at the measuring device, where they are caghe movements are not independent. Together they are not
tured and cannot leave. The measuring device acts as gassical shot noise and Eq4.1)—(1.4) do not apply.
(mathematical absorbing boundary. In classical shot noise We analyze exactly this situation: a channel that admits
the interarrival times at the measuring device are 1D expoone charge at a time from the léftor right R reservoir. The
nentially distributed random variables and the inten#ty measuring device is on one side of the channel and counts
equals the mean curreit) (Schottky's formulg4]) incoming charges as positive and outgoing charges as nega-
tive. In our model, discrete charges arrive at each end of the
K=(1). (1.9) channel from different populations in the reservoirs that may
have different concentrations and therefore different interar-
rival times. They may enter the channel, if it is empty, and
spend random times moving to one end of the channel or the
1 other. These times are determined by the dynamics of motion
(= m (1.2 outside (interarrival time$ or inside the channelfull-
channel timegs
and Motion inside the channel is determined by many factors
that depend on the physical setup of the problem. A separate
(7?)—(1)? theory, for exampl¢6], is needed to determine the statistics
- T (1.3 of the full-channel times, given the details of the motion. The
full-channel times depend on the direction the charge moves:
In more general situations the measuring device distinmore precisely, they depend on the side they enter and exit.
guishes between incoming and outgoing charge movementsor example, if discrete charges cross the same channel but
Movements in one direction may separately be classical shan different directions, they move, in time, over different
noises, but the combination may or may not. Landd¢r potential profiles(even if their charge and other properties
considered the situation in which the sum is nearly a classiare the samebecause the profiles are usually not symmetric.
cal shot noise. He considered two independent sources die different charge carriers can also have different proper-

If the interarrival times are IID random variableg,r,, . . .,
not necessarily exponentially distributed, tHem

K
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ties, e.g., different, mass, size, or friction. Thus differentE, , and if it refills from the right, we call iEg. We callE,
charge carriers spend different times in the channel. Carrie@nd Er empty-channel timesr waiting times We assume
can cross the channél.e., enter at one side and exit the that the system is in the steady state, that is, the stochastic
other, carrying arans flux) or they can enter and leave the processes have been going on for an infinite time at the mo-
same siddeither rightR or left L, carrying acis flux). This  ment observation begins. If observation of the channel starts
situation violates the assumptions of shot noise theory besometime during the period when the channel is empty, the
cause the counting events are not identical, some events time for the arrival of the first charge carrier from the left or
are positive and some are negajie®d are not independent from the right is called theesidual interarrival time de-
(i.e., carriers exclude each other in the chapr@inall sys- notedA} or A% [2].
tems such as th@rotein channels of biological membranes  The times that. or R charge carriers spend in the channel
have these characteristifs,8]. (i.e., charges that entered the channel from the left or yight
The main result of this paper is a formula for the powerare calledull-channel timesdenoted genericalllf, andFg.
spectral density function of current fluctuations in the singleThey are assumed to bgenerally different IID random
occupancy model described aboMeg. (3.33)] and for its  variables.F , denotes the full channel times of those
intensity[Eq. (4.1)]. These formulas involve no approxima- charge carriers that exit on the lefg z denotes the full
tions beyond those in the model itself. We compute the speahannel times of the othdr charge carriers, namely, those
tral density for the general case where the distribution othat exit on the rightFg, andFxg are similarly defined. If
waiting and full-channel times are not necessarily describedbservation starts some time after a charge carrier has en-
by simple rate laws, i.e., our model is not Markovian. Intered the channel, but before it leaves, (fEmaining wait-
diffusion systems, such as channels, this reflects the fact thitig times of charge carriers in the channel are calésidual
barriers are often small and so Markovian jump models ddull-channel times & (i=L,R; j=L,R).
not apply[9]. Thus the dynamics in the channel can be gen- we assume, for the sake of simplicity, that the waiting
eral, ranging from ballistic to Brownian, or even Markovian process is renewed when the channel empties. The renewal
dynamics. assumption is justified if, for example, the waiting times
Our intensity formula adds terms to E@..4), due to the  have exponential distributiorf40]. It is also justified if the
dependence introduced by single occupancy and compefinitial state of the reservoir is the same after each charge
tion. The cis trajectories, included here, add a significant, carrier leaves the channel. The initial state is always the
sometimes dominant, contribution to the fluctuations. Thesame if the popu|ation of Charge carriers equi”brates very
power spectral density function is different from that of shotquickly after a charge carrier leaves the channel; that is to
noise. It is not flat with frequency, but rather has a variety ofsay, the equilibration time of the population is much less
shapes, depending on conditions, even when all distributionghan the time the charge carrier spent in the channel, its
are exponential; noise intensity depends nonlinearly on th@y|-channel time.
net current. The formulas are generalized to allow mixed The empty- and full-channel times come in pairs. After
populations of different species of charge carriers on botieyery full-channel time the channel empties; therefore, each

sides of the chann¢Eq. (5.1)]. E; is followed by aF;; and after eaclf;; comes arg,. A
This paper is organized as follows. First, in Sec. Il Wetyp|ca| realization of tlme intervals is

define exactly the model under consideration. This includes

the specification of the measuring device as a counter of {Fir.ELFIRE}Fl L ERFRLELFRR 1. (2.
charges. In Sec. Ill we calculate the spectral density and

correlation functions. Section IV presents the main result ofn this realization, observation begantatO, when the chan-
this paper: the spectral density of the measured current. Ael was already occupied, namely, by a charge carrier that
number of special cases are presented. Section V treats thad entered on the left and that will exit on the right. Events
case of several species, in which slow charge carriers may this realization occur at timetg,ty,..., specifically,
dramatically change the measured current. Our mathematical

computation generalizes the analysis [#], Chap 5, pp. to=Fir, t=FrtEl, tL=t;+Fl (22
161-174, of correlations of electronic signals.

and so on.
We define the probability distribution of the empty chan-
Il. DEFINITIONS AND THE COUNTER MODEL nel time E; as the joint probability
Our mathematical model describes a narrow channel that  pyE, <t} =PA;<t,A;<A;c}=Wi(t) (i=L,R),
contains one charge carrier at a time. We assume that posi- (2.3
tive chargeswith charge+1) arrive at the left end of the
channel at IID random times, denoted generically. Simi-  where the complementary indéx is defined by
larly, charges arrive at the right end of the channel at IID
random timesAg. These are callethterarrival times. They o R Ifi=L

do not depend on whether or not the channel is occupied. If
the channel is empty upon arrival of a charge carrier, the
charge enters. If the channel is occupied, it is rejected andlhis notation describes the joint probability thatiacharge
returned to the reservoir; it does not queue Eps the time  carrier arrives before aif charge carrier in the competition
between the moment the channel empties and réfitan  for an empty channel and this occurs before titneThe
either side. If it refills from the left, we label itE and callit comma in Eq.(2.3) is a logicaland The joint probability

L ifi=R
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distribution functionW;(t) can be expressed explicitly in R @
terms of the probability densitigg(t) andr;c(t) of the in- wi(t)=aje” (TR W(p)= ————. (212

+ag+
terarrival timesA; andA ¢, respectively. Sincd; andA ¢ are autartp
assumed independent, their joint probability density functionn this case
(PDPF), which is the PDF oE;, is r;(X)ric(y) and then

. ~ ' ~ aj
P(i)=w;(0)= , W (0)= .
Wi(t) = ff (0 e(y)dx dy—f dxf dy 100 e(y). S ater | <aL+aR>2(2 13
X<y .

2.4
@9 In a special case, where charge carriers arrive at the chan-

Setting nel by diffusion from the surrounding left and right baths
(which form the reservoirs of our mode[11-13 show that
wi()=W(t) (i=L,R),
a|=277piDiRi, (214)
we find, from Eq.(2.4), that
where the charge carrier concentration in the bath onisigle
o t pi , the diffusion coefficient i®;, andR; is the radius of the
Wi(t):ri(x)ft ric(y)dy=ri(t)[1— joric(y)dy}. channel. Note that in this case the interarrival titye de-
(2.5) pends on the concentratign, while the empty-channel time
E, depends on both concentratiopsand pg .
The probability that an charge carrier arrives before @h Similarly, we denote byQ,z(t) the joint conditional
charge carrier in the competition for an empty channel is probability that a charge carrier exits on the right before time
_ t, given that it entered the channel on the left. Thygt)
P(i)=W;(®)=PHA;<Ajc}. (2.6 =Qjj(t) is the defective density function of the full channel
t|me Fi; and 0L (0)+qr(0)=1. In particular,
IJ(0) Qjj(0) is the probability that an charge carrier that
entered the channel on sidexits on sidg. We denote this
probability by P(j|i), that is,

The functionsW,(t), the probability distributions of the
empty channel time&;, are not proper distributions but
ratherdefective distributiongandw;(t) are defective densi-
ties] (see[10], pp. 115 and 374because they are not nor-
malized to 1[see Eq.(2.6)]; rather they are normalized to- i (0)=P(jli). (2.15
gether, collectively remedying each other’s individual defect
The defective mear-q  (0) is the mean time a charge car-

Wi () +Wg(»)=1. (2.7 rier (that enters the channel on the left and exits on the left

spends in the channel. Thus the first two moments of the

Defective distributions often arise in physical problems withfuII channel time of ari charge carrier are given by

flux at the boundaries, e.g., stochastic problems in which part

or all of the boundaries are absorbitgge[2], pp. 222 and (F)=—05(0)—§/(0)
234).
We denote byv;(p) the Laplace transform af(t). Thus (FP)=8(0)+§c(0),
Eq. (2.6) is equivalent to
R <F |°> Q..C(O (2-16)
P(i)=W;(0) (2.9 . . . _
and the mean time a charge carrier spends in the channel is
and Eq.(2.7) is equivalent to
(me)=P(L)(FL)+P(R)}(Fg). (2.17)

We define the mean renewal time

The defective mean time for ancharge carrier to arrive at

an empty channel after it has emptied is (tp)=(Tw) +(7E). (2.18
For example, if full-channel times are exponentially distrib-
(Ej)= w,_(p) =—-w/(0) (2.9  uted with the four ratey;
p=0
and the mean waiting time fany charge carrier is aij(p)= S — P(ili)= e
g y ¢ B Yi T YirTP’ YiLT YR
(Tw)=—W{(0) ~Wx(0). (2.10 (219
Fiy= , AL
For example, ifA, andAg have exponential distributions (Fi) YiLt ViR (Fiier= (yiLt 7|R)

with ratesq; and ag, that is, - - .
The probabilitiesP(i|j) and the mean full-channel times

PiA<t}=1-e @' (i=L,R; t>0), (2.1 can be calculated once the physical system or model that
defines them is specified. For a model of diffusion as a
then chemical reaction, Ref6] calculates both the probabilities
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The Counting Process
1 13 t
o |7 Fau
The Count
n(t)
[ t; s h . R
. - E)o|eF2 F|E . FIG. 1. Counting procesg(t) for the realiza-
- - tion (2.1).
1y I
2| « Ez > |« FL"L - E;
| ] | ] !
0 5 10 15 20 25
Time t
and the mean full-channel times. In an overdamped chemical 77( I
reaction, the probabilities are given by I(t)= Z 0,8(t—t;) (2.22
=
D(i%)/KT
P(i]i% =27 5 BCOTKT (2.20  where the “counting function”¢, can assume the three val-
f y(x)e dx ues

wherek is Boltzmann’s constanf] is the absolute tempera- 0 if t—t_,=E_, F_, or Fr_

ture, ®(x) is the electric potential in the channe{x) is the
(displacement dependeritiction, and the reaction region is
located in the interval <x<R. In particular,

0i= 1 if ti_ti—leR (223)
_1 |f ti_tifleRR or FLR'

P(RIL) If the charge carried by each particle+sl, the process(t)
——— =g APKT (2.21) s the current flowing through the channel.
P(LIR) The unidirectional currents are given by
mk;errsiﬁond?g) ®(R) is the potential difference across _W'(O)flnc(o) P(i)P(icli)
gion. (ljjc)= = (2.24
(tp) (tp)

The m i i is Qi
e measuring device as a counter and the net mean current is given by

The measuring device is modeled as an ideal counter of
discrete charge, placed at the right end of the channel. It =gy —(ILr)» (2.29
counts(a) anLR charge carrier as 0 when it enters and-ds
when it exits the channefb) anLL charge carrier as 0 both where the mean timet ) is given in Eq.(2.18 above. Equa-
when it enters and when it exits becausd.ancharge carrier  tion (2.24) is a straightforward consequence of the calcula-
does not reach the COUI"ItQC,) anRL Charge carrier as-1 tions of Sec. Ill. This expression can be understood as fol-
when it enters the channel and as 0 when it exits, @han  lows. The expression (i) is the total number of renewals
RRcharge carrier twice, once asl when it enters the chan- Per unit time and the numerator in E@.24) represents the
nel and again, as-1, when it departs. This particular model probability of counting aiii © charge carrier. Thus their prod-
reflects the properties of the electrode in patch clamp meaiCt is the unidirectional current.

surements of biological channglg|. Our calculations extend If the interarrival times are exponentially distributed, with
easily to include other configurations of the counter, e.g.lates o; [see Eq.(2.1D], then the unidirectional currents
whereLL trajectories are also counted. (2.24) are given by
The counting process in the realization E2.1) is shown o
in Fig. 1. Counts occur at times,t;,t,, . ..[see Eq(2.2)]. (o) a;P(ii) 2.26
To calculate the statistical properties of the current, we 77 1+ a (FL) + ap(FRr)” '

construct a cumulative counting proces@). The consecu-

tive (random times when an arrival or a departure occur areNote that the dependence of the unidirectional currents on

denoted; . The cumulative coung(t) changes at times by ~ microscopical times is different from that in classical shot

1, —1, or 0, according to the recording of the counter. noise theory, even if the unidirectional currents contain only
The current is given by trans trajectories.
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The ratio of unidirectional fluxes has been very useful in
some application$7]. Equations(2.14), (2.21), and (2.2 I
imply that the Ussing flux ratio is

z E 6;exp( — pt;) 6xexp( — pty)
i=0 k=i+1

8

<|LR> _ CYLP(R“—) _ pLDLRL
<|RL> CVRP(L|R) prDRrRR

e ADIKT iZO lzl g;exp(—pt) 6 exp(—pti.), (3.9

S =3, (3.9

as predicted by the Nernst-Planck equafi@h
wherep andX . mean complex conjugates. As shown be-
low, 3, produces a frequency-independent term in the spec-

We consider the case where the fluctuating curreniral density (i.e., white noisg whereas>, contributes a
through the channel=I(t) is a stationary stochastic pro- frequency-dependent component of noise in the spectral den-
cess. The spectral density bft) is related to the spectral Sity- We now proceed to calculaffl (1,p)|?), first calculat-
density ofl (t)—(1) by the relation4] ing (Zo)-

Ill. THE SPECTRAL DENSITY

S(I,w)=S(1—(1),w)+47(1)?5(w). (3.1 A. Calculation of (3)

We first consider in detail the case when the channel is
occupied att=0. The time interval betweebh=0 and the
time it empties is the residuaIFi’j . Setting e=p
+p=2 Re(p), we rewrite Eq.(3.7) as

For w#0, we haveS(l,w)=S(l—(l),w). This, together
with the mean value of the currefit) (2.25, gives the spec-
tral density of the process for alb. The intensity of the
current fluctuations, denoted, is a useful property of the
current; it is defined by4], p. 23, Eq.(2.13), and gives the
limiting low-frequency power of the curren(t) once it is

made zero mean by subtracting the average cufignt

KE%IimOS(I,w)z%limOS(I—U),w). (3.2

We now consider the Laplace transform of the process

1(t),

L(I,p)Ef:I(t)exp(—pt)dt. (3.3

(Zo)= 2:0 (67exp( —et;))
=(Boexp— etg))

+(exp(— et0)>i§1 (0%ext — e(ti—tg)]).
(3.10

The term(exp(—ety)) can be factored from the sum because
to is statistically independent of the later time intervals.
The main part of the calculation is to determine the ex-

The spectral density of a stationary process can be calculatgrgctation

from its Laplace transfornfisee[4], p. 27, Eq.(2.27)]. For
the stationary procedgt), the spectral density is given by

L(I, g—iw) 2>, (3.4)

where the Laplace transform of the current ER.22 is
given by

S(l,w)=2 Iime<
e—0

L(l,p>=i:20 giexp( — pt;). (3.5

Hence

[L(Lp)IZ= 2 drexp(—pti) 2 Oexpl Pl

=2t +2, (3.6
where
EoEiZO o2exd — (p+p)ti], 3.7)

(6Fex — e(ti—to)])- (3.1)
To exploit the fact thak; and F;; come in pairs, consider
separately the case wherés odd or even. At=0 the chan-
nel is occupied; hence whanis odd (ever), the last time
interval that determines the counting functiénmust be a
waiting time (full-channel time.

Fori=2n,n=1,2,..., wehave

<9§neXF[ - E(t2n_to)]> = <6Xr[ - E(thfz_tO)D
X <exlii —€(ton—ton-2)] 0§n>

and 6, is determined by a full-channel time. In this expres-
sion, we used the fact that the last two time intervals are
statistically independent of the previousn22 time inter-
vals. For the further calculation of,,,, we need consider
only full-channel times of typ&RR and LR, since for other
full-channel times#,,=0. Using the identity Eq(7.1) of
Appendix A, we can write the expressi@®11) for i=2n in
terms of the Laplace transform of the defective density func-
tionsw;(p) andq;;(p) as

(exf —e(tan—to)])=C"(e), (3.12
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where the moment generating function of the renewal periodt is shown below that the only contribution to the spectral
is density comes from the second term in E818. We there-
fore define

C(e)=w,(e)[qL.(€)+qLr(€)]+Wgr(€)[ArL(€) +qLr(E)]. w
(31)=2, 2, (fiextd—p(ti—to)]6i-
313 xexp —p(tiy —to)1),

(3.19

(Ei")E(eoexq — eto)>|21 (6, exd —p(t—to) ).

Since in this cas#3,=1,

(05,exH — €(tzn—10)1)=C" *(€)[Wr(€)Arrl€)

+W, () r(e)]. (3.149 To compute(S%) we must first calculate the correlation
function, defined by

A similar calculation is carried out for the case wheres C(i,i+1)=(0exd —p(ti—to)16i+1 ex —p(ti+i—to)1).
odd. Here the last interval is a waiting time and we get a

contribution only from time€g. Summing up all terms ap-

pearing in Eq(3.10, we get (3.20

1. Calculation of C(i,i+1)

(20)=(oexp — eto)) +(expl — eto))
To calculate the correlation function, it is convenient to
XWR(€)+WR(6)QRR(€)+WL(6)QLR(6) consider four possibilitiesi) | is even and is odd, ii) | is
1-C(e) odd andi is evenyiii) | andi are even, andiv) bothl andi
(3.15 are odd. For each case we must consider all the different
' values that the counting functiorts and 6, can assume.
Consider in some detail the case wheoth | and i are
Note that even. Bothg, and ¢, appearing in(3.20), are determined
by a full-channel time(recall that att{ the channel is
empty). We partition the +1 intervals into four parts(i) the
. ., -, firsti —2 intervals,(ii) the pairi —1 andi, (iii) the nextl —2
(tp)=—C'(0)= E {W{ (0)+W;(0)[T;;c(0)+4i (0) 1} time intervals, andiv) the pairi+1—1 andi+|, because
each part is statistically independent of all other parts. We
=(7y) +{7E), (3.1  therefore get

where(r,) is mean waiting timg2.10 and(7:) is the mean C(i is even, i+ is even

full-channel time, weighted by the probabilities of winning =(exd — e(ti_,—to) D[~ W (€)qLr(€)
the empty channel, given in ER.17) [see Eq(2.18]. Simi-
larly,

—Wg(€)Arr(€)]{exd —p(t_2—to)])
(t3y=C’(0 (3.17 X[ =WL(P)ALr(P) —Wr(P)drr(P)]. (3.2D)

Note that there is no contribution from the terms that contain
The second momext 2) depends on the second moments ofLL and RL, because the,=0 and 6_,=0. These terms
the microscopic times. describe the events where the particle exits from the left-
hand side of the channel and hence is not counted by the
counter on the right-hand side of the channel.
B. Calculation of (%) Fori even and odd, we determing and 4, from a
First, we rewrite(S ., ) as full-channel time and a waiting time, respectively. In this
case, we have

<2+>:<008Xp(_6t0)>|21 (Orexd —p(ti—to)]) C(i is even, i+l is odd

©o =(exfd —e(ti_o—to))[—W_(€)qLr(€)
+<exq_fto)>i21 ;1 (6iexd —p(ti—to) 164

_ —Wg(€)drr(€)]{eXd —p(t;_1—to) )Wr(pP).
xexd —p(ti;—to)]). (3.19 (3.22
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Fori odd andl even, we have
C(i is odd, i+I is odd
=(exd — e(ti_1—to) [)[Wr(€)qrL(P)

+Wg(€)qrr(P)1{eXd —p(t|_2—to) NWr(P).
(3.23

Here the sign ofg and 6, is determined by the waiting
times.
Fori odd and >1 and odd, we have

C(i is odd, i+I is even,|>1)
=(exd — e(ti_1—to) [)[Wr(€)qrL(P)
+Wg(€)qrr(P)](exd —p(ti_3—to)1)
X[ =W (P)GLr(P) —Wr(P)Grr(P)]. (3.249

Here 6 is determined by a waiting time, while ,, is deter-
mined by a full channel time. Fdarodd and =1, we have

C(i is odd, I=1)=(exd —e(ti_1—to)])

X[ —Wr(€)drr(p)].
(3.25
2. Calculation of (31)

We now find the exact expression f(X) by summing
the correlation functioné§(i,i +1) (3.2)—(3.25. We use the
identity

<21+>=21 ;1 C(2i, i +|))+Z1 |20 CQ2i,2(i+1)+1)

+ZO Zl CRI+1,2i+1)+1)
+_ZO 2 CRI+1,2i+1+1)) (3.26

and Egs.(3.12 and(3.13 to get

1= ()P e
1 1-C(e) R R 1-C(p)

X[G(e,p)+H(e)Wr(P)+H(P)]}, (3.2

where we have defined

G(e,p)=Wg(€)[arL(P) +drr(P)],
A ) A ) (3.28
H(p)=—w (p)q.r(P) —Wr(P)JrR(P)-

C. The limit e—0

The spectral density is now determined from E8.4).
According to Egs(3.6) and(3.9),
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S, w0)=2 i <2(€—' >>
(l,w)= Eme 0|3 lw
+4IimeRe<2+(£—iw)>. (3.29
e—0 2

We consider each term separately. First, from H8sl5H
and(3.16),

2 . “ n n “
2 !m6<20> = ) [Wg(0) +Wg(0)grr(0)+W(0)q r(0)].
(3.30

Note that in this calculation, the factdexp(—etg)) has
been omitted. In the limie—0 that factor is the probability
that the channel is initially occupied, as was assumed in the
calculations above. Similar calculations, conditioned on an
initially empty channel, give the same result but with the
factor lim__(exp(—ety)) replaced by the probability that the
channel is initially empty. It follows that the sum of these
two cases is independent of this factor. Thus, in general, it
can be set equal to 1.

It can be seen that Iigr;oe@i"):O. This is so only if
w#0. Our calculation is restricted to this case. &0 the
power spectral density contains &w) multiplied by (I)?
[see Eq(3.D)].

The next term is

o2
2 !m6<2+>_ (tp) Wr(0)drr(i @)

[G(0jiw)+H(0)J[H(i®)+We(i®)]
* 1-Cliw) :

(3.3

Equation(3.3)) is related to the exact expression needed for
the calculation of the spectral density,

Iimoe<2+) = lim e(exp —toe) (S1). (3.32

We can now collect all the different terms and get the
main result so far

2 R . R R
S(l,w)= @ [Wr(0) +Wg(0)grr(0) + W (0)q r(0)]

4 . o F(iw)
+ @ R _WR(O)qRR(Iw)+ m .

(3.33
Here we have used the notation
F(p)=[G(0p)+H(0)][H(p)+Wg(p)]. (3.34

Recall that the function&(0,p) and H(p) have been de-
fined in (3.28 and(tp) in Eqg. (3.16).

IV. ASYMPTOTIC PROPERTIES OF THE SPECTRAL
DENSITY

First, we consider the limib—0, because in most experi-
mental situations it is easier to measure low frequencies ac-
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curately than high. This limit corresponds to the long-time 2 . R . R R
asymptotics of the autocorrelation function of the currentu['f‘w S(lvw)zm [WR(0) +Wg(0)qrr(0) +W(0)qLr(0)]
fluctuations. Taking the limitw—0 in Eq. (3.33, we get,

from Eq. (3.2, - % [P(R)+P(R)P(RIR)+P(L)P(RIL)]
P
£2)(1)2  2(] _2
K:<|LR>+<|RL>+—< <P,3£>> +$[XRL_XLR]1 (tp) [2P(RIP(RIR)+ P(RIPLIR)
(4.7 +P(L)P(R|L)]. (4.4

In contrast to the case—0, this result is sensitive to the
where location of the counter, that is to say, the side on which

current is measured. The reason is that at high frequencies

the counter is sensitive to the correlations that occur on the

Xiie=W/ (0)@;;c(0) +W;(0) microscopic time scale. A factor of 2 multiplies tR&Rterm,
. _ hence theRR terms contribute twice as much noise as the
=—(E))P(i°li) = P(i)(Fiic), (4.2 RL andLR trajectories. This is expected since R& terms

are counted twice, as they enter the channel and as they exit.
The LL trajectories contribute to this expression only
the mean unidirectional and net curreitgc) and(l) are  through the dependence of the mean pair tif)e on the
given by Eqs(2.24) and(2.29), (tp) is defined in Eq(3.16), full channel times.
and(t%) is defined in Eq.(3.17). Note that Eq.(4.1) adds
two terms to Eq.(1.4). They reflect the dependence intro- A. Saturation
duced by single occupancy. ) ) ) )

The intensity appears to be a quadratic function of the AS the interarrival time on one side, sdy, becomes
total current flowing through the channel. However, theShorter, the mean unidirectional curréihtg) increases and
mean current in Eq(4.1) is not an independent variable; saturatgs. From Edq2.26 we see that the condition for this
rather bothK and(1) are functions of the microscopic times, Saturation is
which in turn are functions of the physical variables that
determine these times. In biological applications these may
be concentration.s and voIt.aQe across thg channel. Thus EQg,q the saturation value is
(2.25 and(4.1) give a nonlinear parametric dependence be-
tween the intensity and the mean current. P(RIL)

The expression of the intensity is symmetric in the sense (I g)= ~E (4.5
thatL andR are interchangeable. Changing the location of (FL)

the counter does not alter the spectral density-at0. Th C
: e mean unidirectional curregt decreases to zero as
Note that the prefactor ofl)? in Eq. (4.1) depends on Qtey)

A . L increases indefinitely so that the net mean curkgit
second moments of the waiting and full-channel times an(gaturates at the value(5 when (Ig)<(l g
thus is more dependent on the details of the probability dis— P(R|L)/(F,). Equation(2.24 then implies the additional
tributions of the microscopical times than the other terms incondition

Eq. (4.1). In the particular case when the waiting times are

a (FL)>1+ ag(Fgr)

negligible and so the channel is almost always occupied Eq. arP(L|R)<a P(L|R).
(4.1) simplifies significantly. Fow; (0),w”(0)—0, we ob-
tain, from Eqgs.(4.1) and (4.2, If charges arrive by diffusion, the ratg varies as a func-

tion of concentratiorisee(2.14)]. Thus the current saturates
as concentration increases on one side.

(T2)(1)? In this limit, we recover classical shot noise. Indeed, the
K=l r)+{Ir)+ ey net mean current il ) [as given in Eq(4.5)], which is the
mean current of classical shot noise with interarrival tirge
2(1) whose mean value is

= 7— [P(R)(Fr0) = P(L){FLR)], (4.3
(7F)
(rog= SF0
SVP(RIL)

becausgr,)—0 in Eq. (2.18. This is a particularly useful o _ _ o
equation because(i) is the probability that a charge enters [see Eq(1.2)]. This is shot noise with nonexponential inter-
from sidei and can be independent of the dynamics of ar-arrival times.
rival. In this limit Eq. (4.1) implies thatk becomes independent

The short-time behavior of the autocorrelation functionof ¢ and reaches saturation as well,
corresponds to the asymptotic behaviorSgf,w) for large 5
w. For w—o, we get, using the normalization im K= P(RIL) 1+ P(R|L)<FL>_2<FLR> 4.6
drr(0)+drL(0)=1, ap — (FL) (FL)? (FO I’
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and is thus independent of all arrival rates. That is, the in- a P(R|L)=agrP(L|R) (4.12
tensity, as a function of concentration on one side of the

channel, saturates at the value given in Eg6). It can be o, using the relation Eq2.21),

written as(1.3

ap=a e 2PKT (4.13
K= <T%N>_<TSN>2 ROTE
(1e0)° Equation (4.13 is called the Nernst equation in physical

chemistry[14] andA® is thereversal potentialat which the

where current is zerp Using Egs(2.20 and(4.13 in Eq. (4.1), we
<72 . P(R|L)<FE>+2<FL><FLL> find that at the reversal potential the intensity is given by

SN P4(RIL) ' . 2a,P(R|L) @14

A further simplification is obtained if nais trajectories 1+ a [(FL)+(Frre 2T '

originate from L. Then @, (x)=0, Q,r(0)=1, and -
(FLr)=(F_), so that charge carriers flow only from left to If @ [(FL)+(F)e™***T]<1, Eq.(4.14 reduces to,
right. Equationg4.5) and(4.6) then simplify to

. K=2a, P(R|L)
{lm)= (F) @D and if a [(F)+(F e *®*T]>1, the intensity saturates at
and - 2P(RIL) 415
L (FH—(F? (Fu+(Fre 27 |
lim K= TN (4.8
a —®

When the mean current is zero, as described in(E®5),
respectively{2]. For the special case where the full-channelthe fluctuations cannot be described by fluctuations in ionic
times are described by normalized exponential distributions;onductance, as defined in membrane physiolddy16,7,

we use because at the reversal potential conductance does not pro-
duce current.

A YLR AlthoughK in Eq. (4.15 appears independent of concen-
ur(P) = YRt P 4.9 tration, it should be borne in mind that the potentia{x),
the mean full channel time&,) and(Fg), and the prob-
to get 1{F )=y, so that ability P(R|L) depend on the concentratiofts7]. Nonethe-
less, it is an experimental fact that in many biological chan-
(LR =R nels the reversal potentidl® in Eq. (4.13 does not change
and noticeably with concentrations i, / ag is held constanisee
Eq. (2.14] [7].
lim K=y r=(lr) (4.10
aw—e C. The shape of the spectral density in symmetric systems
which is the classical shot noise relatithl). To investigate the shape of the power spectral density
functionS(I,w), we consider a simplified idealized symmet-
B. Noise intensity at zero net current ric system in which

If the mean net current vanishes, the intensity depends
only on the mean unidirectional currents as in Eig4). The
mean unidirectional currents, in turn, do not depend on

N

Wr(P)=WL(p)=wW(p), W(0)=

higher-order moments of the time& and F;. Thus the i (P)=Adrr(P)=0cis(P),

intensityK does not depend on higher-order moments of the R R R (4.16

waiting and full-channel times ifl)=0. dLr(P)=ArL(P)=0trans(P),

In systems of electrochemistry and membrane biology the

equilibrium cas€1)=0 occurs when the potential across the Qcis(0) + Ugrans(0) = 1.

system has a particular value. We now determine the noise

intensity in this situation. In this case, by EQ.29), These conditions can occur if the concentrations of charge
A N - N carriers are the same on both sides of the chajsest Eq.
W (0)Gr(0) =Wr(0)Gr.(0) (4.19 (2.14)] and the potential in the channel is symmetric, that is,

if the channel is located between the poirts —d andd,

thend (—x)=®d(x). In this cas€l)=0. This does not mean
P(L)P(R|L)=P(R)P(L|R). that the unidirectional currents vanish; indeed, these

currents are the source of fluctuations. Defining
When the arrival times are assumed to be described by eX3(i ®)=0is(i ®) + Qyans(iw) and using the result Eg.
ponential distributions, conditio.11) becomes (3.33, we find that in this model the spectral density is

or
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2 A sider first the case when the arrival times are exponentially
Sl w)= ) 1+Re —Qis(iw) distributed. For this casea2(0)—@%,{0)=0; hence
P
o 201 exp_ sy \5 QO ., e
_[Qliw)~1]%(iw) ] C a1p SR O g [4Weg0)+Q(01Q(0).
1-2w(iw)Q(iw) (4.20
The two limits w—0 andw— are given by This expression shows that the behavior of the spectral den-
sity changes whes5* changes sign. The first term on the
lim S(1,w) = 2 Aerans 0)< lim S(I,w)= L right-hand side of Eq4.20 is always positive, whereas the
0—0 (tpy 1o w— (tp) second is negative. Hfis trajectories are not dominant in the

(4.18 process(i.e., the first term can be neglecjedhe spectral
density is a decreasing function efnear tow=0.

In the particular case where all processes, including the
full-channel times, are exponentially distributed the Laplace
w? transforms of the defective densities are

© S,+o(wd), (4.19

We now consider in some detail the case whes small.
We write

2
S(l,w)= @ Qtrans(0)+

ag
2ap+p’
A (4.2)
) Q' (0)

Sy =(tp)l(0)— {[4W,(O)+Q,(O)JQH(O) where y=1vy.+ v, is the rate that determines the full-channel
cis 2(tp) time. For this case

~ Y ~ Y ~
Qcis(P) = chv Qtrans(P) = - w;i(p)=

where p y+p'

1

+2Q' (0)[4W'*(0)~W"(0)]}. (tp)= ot .
@ Y

The sign ofS, determines whether the spectral density is a
decreasing or increasing function efnearw=0. We con- A simple calculation gives the spectral density

0+ 02292+ 2ad+ 200y — voy) + Y(y+2a0)%(y— 7o)

2
SO~ [y 2a0) 2+ @2 P+ 7] | (422

Two types of behavior are observed. When thetrajecto-  distributions are exponentially distributed, memory plays no
ries are dominar.e., y=v,), the spectral density is a mono- role. This case is characterized by

tonically increasing function ob (for positive w). When the

trans trajectories become dominant, the spectral density is AL(P) =8r(P)=GL(P), Gr(P)=0Lr(P)=0r(P).

not monotonic; in fact, it has one extremum, a minimum in

Fig. 2. For smallw Eq. (4.22 gives

(4.29
| w)= 4ao(y—vc) 2 4ag
Slw)= 2agt )2 Y (2agt )Y The above assumption means that once the particle has en-
) 3 tered the channel, itand the environmejtinstantaneously

X[ve(2agt+ y)*=2agy(agt y)]+0(w”). forgets the path in phase space it had followed prior to the

» entrance of the charge carrier into the channel. This can oc-

As 7 traverses the critical value cur, for example, if the charge carrier is trapped in a deep

potential well in which thermalization is reached very

critical __ 2agy(apty)

= quickly.
Ye “Qagt )Z (4.23

Under the above assumptions, the following four func-
tions determine the properties of the spectral density:
a transition occurs from a decreasing to an increasing spec-
tral density neaw=0. ¥, o

Next, we consider another symmetrical case where the ai(p)= ——, Wi(p)=——. (4.25
defective distribution functions describing the full-channel y+p a+tp
times are insensitive to the initial location of the particle.
This means that once the particle has entered the channel thiere q; is the rate of arrival from the sideand y; is the rate
direction from which it entered is forgotten. This situation with which a particle exit the channel on sifieWe denote
occurs, for example, if there are potential wells at the en<y=v, + yg and a=«a + ag. The general resul(3.33 re-
trances to the channel. For this case, and when all defectivduces to
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S(1.0)= 2(ya,+ay,) Mot y) (Ve +aty,) e .
' (y+a) (a+y)[(at+y)?+o0’] " '
(4.26

This spectral density is a combination of a white-noise term o8

and an inverted Lorenzian. Hence, for the case where both

cis and trans trajectories exist, the spectral density always x

increases close te@=0.

D. Intensity in a symmetric channel

The intensity varies in a complex way in an interacting

system like this even in the simplified case of a symmetric

channel. We assume that

auL(p)=0arr(P),

but the empty-channel times are not equal, that is,

aLr(P)=0rL(P),

WL(P) #Wg(P).

The statistical properties of the empty-channel times are a
sumed to be described by

a;

wi(p)= atp’

wherea=qa, + ag. For this case Eq4.]) is

qcr(0)
K=A;+Ay(1)?, Alz—ff;?w,
e
A= %_ 2<ttrans>a (4.27)

where

(tew=—G(r(0)—8[(0), (t3)=8/(0)+4] (0),

_ GiR(0)
<ttrans> = aLR(O) .

FIG. 2. (a) Monotonic spectral density for exponential defective
densities(4.21) with ap=1, y.=1, ;=0 (lower curve and op=1,
v.=0.8, y,=0.2. (b) Nonmonotonic spectral density, wiilg,=1,
v.=0.2, v,=0.8 (lower curvg and ag=1, y.=1, y;=0. &w) is not
shown.

0.4 -
ag —2.0|

op =1.0

ap =0.4

o =0.1
R

o =

FIG. 3. Intensity vs mean current with, g(p)=0r.(P)

=¥ (7+ e+ p)s A (p) =arr(P) = ¥/ (71 + v+ p), and wi(p)
=ajl(a +agtp). 0<q <, y.=0.2, and ,=0.8. ag is

§_hown in the figure.

Note than when varying botly and ag while keeping

o + ag fixed, theK vs(l) curve has the shape of a parabola.
When A,<0, the intensity achieves its maximum @} =0.
Such behavior does not occur if the unidirectional fluxes are
independent. The graph of intensity vs mean current is
shown in Fig. 3. In Fig. 3 only the rate of arriva] is varied
while the other rates are kept constant. Note that the intensity
does not always increase witkl)|. As (I) changes from
positive to negativeK keeps decreasin¢see explanation
below). This is also the a feature of E(..4). As discussed in
Sec. IV, the intensity saturates ag—x. Note further that

the current saturates so that the graph cannot be extended
beyond a limiting value. When; —o0 the physical interac-
tions and empty-channel times are not important. Even so,
our result does not reduce to generalized shot noise due to
the existence of theis trajectories.

The case where the mean curréht and channel times
are held fixed and the rates of arrival and o are varied is
shown in Fig. 4. It can be seen that the intensity of the
process always increases as «| + ag is increased. This
can be proved directly from E@4.27), for the more general
case where channel times are not assumed exponentially dis-
tributed. For exponentially distributed channel times, inten-
sity curves decrease with) (i.e., A,<<0). When the ratex is
increased, the mean currefity can either decrease or in-
crease. Henc& does not always increase whéh is in-
creasedalso see Fig. Bbecause reflects the total number
of events rather than the excessR over LR charge car-
riers, i.e., the current.

E. RR trajectories only

Stratonovich 4] considers the case of the derivative of the
random telegraph signdll]. This counter is analogous to
that for a channel with on\RR trajectories, which occurs,
for example, if the left-hand side of the channel is blocked.
Then, only two normalized distribution functions are needed
to describe the channefjrg(p)=q(p), P(R|R)=1 and
Wgr(p)=W(p), P(R)=1. For this special case E(B.33 re-
duces to
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Four defective densitiesv?(t) (8=1,2) normalized by
2,8=1,22i=L,R\7V{3(0):11 determine the waiting times. The
probability that a particle arrives froinand is of typeg is
w£(0). The statistical properties of the full-channel times are
given by the defective distributiompﬁ(t). In terms of the
Laplace transform the normalization of these functions is
EJ:L'Rdﬁ(O)zl. Therefore 12 functions describe the statis-
tical properties of the waiting and full-channel times.

The calculation carried out above for a single species is
now repeated for the case of two species. It does not impose
any special difficulties. In Appendix B we give the calcula-
tion of (exd—e(t,,—1ty)]) for the multiple species case;
other parts of the calculation are straightforward. We there-

05 fore give the final result for this important case,

S(l,0)= ﬁ :Ez[v“vé(O)+v‘v€(0>a€R<0>

0 +W(0)4fr(0)1+ ==
22 <t )
Log () ( )
i
XRg — 0 i)+ —————
FIG. 4. Intensity vs lot) for (I} constant. Defective densities e{ 5:21, R(O)dR(i®) 1-C(iw) |
are given in the caption to Fig. 3. Hee=0.4 andy,=1.4. When (5.1)
(1)#0, a is bounded from below. '
4 (- §(o) [ 1-Wiw)] In this case
—(lw —W(lw
L=y R T T wwaie) | 428

Clo=2 2 W(aldf(e+dke]
In this case(tp)=—q'(0)—wW’'(0), that is, it is the sum of
the mean full-channel time and the mean waiting time. Our,

result(4.28) reproduces that ipd]. 'As in the case of a single speciéts) andF (i ) are defined

by Egs.(3.16 and (3.34), respectively. The function&()

andH (), which defineF(p), are given by
V. THE CASE OF SEVERAL CHARGE CARRIER

SPECIES: A BIOLOGICAL APPLICATION

, , , , G(0p)= 2, WRO)[&R(P)+ERR(P)],
Consider the case where different kinds of charge carrier B=12

species are kept at fixed concentrations on either side of the

channel. In this case there are several currents flowing B ~g \ap ~g g

through the channel. This is the usual biological situation ~H(P)=~ :21,2 WL(p)qLR(p)_B:ELZ WR(P)ARR(P)-

and describes the natural function of many biological mem- (5.2)
branes in nerve, muscle, and other cds/].

We restrict our calculation to the case of only two speciesA generalization of(5.1) to the case where more than two
both carrying identical charge. The full situation will be ana- charge carrier species with identical charges can occupy the
lyzed in a subsequent paper dealing with specific biologicathannel is straightforward. Generalizations to cases where
experiments. We present the stochastic core here in the coBharge carriers of different charges can occupy the channel
text of our derivation and theory. are also possible. In this case the counting functipras-

As in the previous calculation, the channel can be occusumes different values for different charge carriers.

pied by at most one charge carrier at a time. In the two |f interarrival times are exponentially distributed with

species case, a typical sequence of time intervals is ratesa®,a? (i=L,R), we have
{...;ELFle. . ElFLERF2.;...;E3 F2n.. ). . ol
w!(p)= (i=L,R; j=1,2.
Here the upper index 1 or 2 identifies the charge carrier. E 2 al+p
. . . I
Because both charge carriers carry the same charge, the i=L,R j=12

counter is insensitive to the identity of the two particles. In

this case our previous definitions of the counting process calt follows that

be used for the multiple charge carrier case. The difference

between the one charge carrier case and the two charge car- (tp)=—C'(0)={(7y) +{7¢), (5.3
rier case are the additional waiting and full-channel times

that we consider below. where, as in Eqs2.10—-(2.15),
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1 A _ device. Properties at high frequencies do.

(tw)=—————, (me)=PUiXF), (5.9 The intensity of the noise in our model differs from that

al given in Eq.(1.4) for two independent shot noises. It con-
tains additional terms that arise from the competition for the
single occupancy channel.

and ' The two typical shapeffor the symmetrical-exponential
. ol _ _ case of the spectral density are monotonic and nonmono-
Pl(i)=———— (i=L,R; j=12. (5.5 tonic. We have searched numerically for other shapes using
_EL‘,R _Elza{ the general result Eq(3.33, assuming that exponential
i=L,R j=1,

distributions describe channel and arrival times. For
this case (3.33 depends on a set of six rates

The current is given, as in Eq2.26), b
g @ 6) y (aL,aR,'yLR,'yLL,'yRL,'yRR). We |00ked at 10000 ran-

(=R —(Ir, (5.69 domly chosen sets of interarrival and full-channel times.
Each of the rates was in the interyal1]. We have not found
where the unidirectional currents are given by in this limited search any qualitatively different shape other
- - than those presented here.
|y ai PY(R|L)+ [ P*(RL) For the general cag¢ depends on six different probabil-
(I = A ' ity densities describing the waiting times and the full-
channel times. For the relatively simple case, when all pro-
aépl(L|R)+a§p2(|_|R) cesses are exponential, the result is controlled by six
(lrp= A , (5.7 parameters. Our model does not reduce in this case to the
usual rate model for biological channg®d. To see this, note
and that the full-channel times are described in E@19 and

(4.9 by four ratesy; (i,j=L,R) that depend on the original
o location of the particle. Only when the full-channel times do
A:1+i=§L:R ';12 al(Fl). (5.8 not depend on the origin of the particle does our theory re-
mT duce to traditional rate theory of a singly occupied channel

For each species?)(R|L) and P/(L|R) are given in the [7].

appropriate version of Eq2.20). Our immediate goal in writing this paper was to describe
The noise intensity is given by E@4.1) with (tp), (1),  the shot noise through a single file biological channel. The
(I.r), and(I,) given in Egs.(5.9—(5.7) and protein channels of biological membranes are a particularly

well studied and interesting single file syst¢m8]. These
oo E pi (i Pi(icl] i o channel proteins have a hole down their middle that forms
=" &, (DIPIED () +(Fii)]  (i=L,R), the channel’s pore filled with a file of water molecules and
(5.9 charge carriers, typically sodium, potassium, or chloride. The
_ _ hole is narrow enough to confer significant selectivity to the
whereP!(i) are given in Eq(5.5), P!(i°|i) in the appropri- system and only one charge carrier can occupy the narrow
ate version of Eq(2.20), and<Ffic> are the mean time that region of the channel at a time. Because these channels regu-
trans charge carriers of either species spend in the channéfte the movement of salts and charge across the membranes
(see[6]). This analysis will be exploited in future work to ©f cells, they are responsible for much of the behavior of
predict the power spectrum of noise observed in the presendBany types of cells, whether nerve, muscle, cardiac, or epi-

of several charge carrier species in biological channels.  thelial. Many drugs act on protein channels, directly or indi-
rectly, and they have been studied medically and biologically

for more than a century.

Measurements can be made from ionic channels one mol-

In summary, we have developed a theory of noise for acule at a time using the patch clamp methb8]. The mean
single occupancy channel wheois and trans trajectories  values of the current flow through such single channels can
exist, given the statistics of the interarrival and full-channelbe predicted 17] by self-consistent theories of diffusion in
times. The latter times have to be determined from separaten electric field akin to the drift diffusion equations of semi-
theories. Some general features of the model, however, a@nductor (and much other physics. One of the striking
independent of the details of the statistics. These are saturaharacteristics of single channels is the fluctuations in their
tion, the nonlinearity in the dependence of intensity on mearcurrent and those fluctuations change dramatically when
current, fluctuations at zero mean current, and so on. slow charge carrierge.g., blockers[7]) are present. Al-

Saturation of intensity and mean current is found. This ishough the fluctuationgoften called “open channel noise”
due to the existence of two types of dynamics. When ther “open channel block} have been studied extensively in
arrival time increases, the finite channel time will cause theSigworth, Miller, and Yellen's laboratoriegl5,19,2Q and
saturation and vice versa. The intensity and mean currerglsewhere16], theoretical analysis hagor the most pait
depend on the channel and arrival times. This results in ased transition state theories that assume large barriers for
general nonlinear parametric dependence between intensicprrent flow[9]. Recently, wg 6] have learned how to com-
and mean current. The properties of the power spectral dempute the flux over barriers of any size or shape and how to
sity at w—0 do not depend on the location of the measuringcompute the statistics of the underlying charge movements,

VI. SUMMARY AND DISCUSSION
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e.g., the first-passage time and contents of the channel, birtg defective distribution functions defined previously in
that theory did not predict the fluctuations in the current.Sec. Il. Averaging over all possible sequence of time inter-
Here we extend the analysis to a single occupancy model ofals, we get
a channel, relating the passage tinjetg) to the fluctuations

in current. In later papers, we plan to relate the passage times no X n

to the structure of the channel and use the present results to (exH — (tn—to)€l)= >, >, (k)WE(E)ng(G)
predict the fluctuations in current observed experimentally. k=07=0m=0
Theories of the mean current and theories of the fluctuating k
current use almost the same parameters and so a theory of X(J)
the mean current should be able to predict the fluctuations,
with no (additiona) adjustable parameters, and it should be
able to predict the response to trace concentrations of slow
charge carrieref a range of concentrations and concentra-
tion gradientswith one or two additional parameters. Spe- Using this expression it can be shown that
cific predictions of such a wide range of experimental behav-

=)

—k Am An—k—m
m |IrRR(E)ARL" " (€). (A1)

ior provide a severe test of any theory and are our ultimate (exfd — (tzn—to) €]y=C™(e),
goal.
where
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APPENDIX B: CALCULATION OF (exp[—(t,—to) €])

APPENDIX A: CALCULATION OF  {exp[—(ton—to) €]} FOR TWO SPECIES

A sequence of @ intervals consists of the following: (i)
n waiting times for which there aréa) O0<k=n waiting
times of the typd. and(b) n—k waiting times of the typ&R
and(ii) n full-channel times out of whiclta) 0<j=<k are of
the LR type and k—j are of the LL type and (b)
O0=m=n—k are of theRR type andn—k—m are of theRL
type. To determindexgd —(t,,—to) €]), we partition the time
interval t,,—ty into 2n subintervals. The averaging proce-
dure consists in integration over all time intervals, as well a
summing over all possible arrangements, as specified. Wff/pe
obtain

A sequence of & intervals consists of the followindi) n
waiting times for which there ar@) 0<I,=<n waiting times
of type LY, (b) 0=<I,<n—1; waiting times of typeL? (c)
O0<r,<n-1l;—1, waiting times of type R}, and (d)
r,=n—I;—l,—r,; waiting times of typeR? and (i) n full-
channel times, out of whicka) 0<j!<I?! are of typeLR?
and1'—j! are of typeLL?, (b) 0<j?<I? are of typeLR?
type andl?—j? are of typeLL? (c) O<s'<r! are of type
andrl—s! are of typeRL?, and(d) 0=<s?<r? are of
RR? and r?—s? are of typeRL2 Using the same
method as in Appendix A, we get

exd — (ton—to) €]y =(exd — (E'+F2+E3--)]e).

( A= (o) 1)=(exif —( )]e) (o (e te) ]y = C(e),
HereE' andF’ are empty- and full-channel times. Next, we
introduce the classes enumerated above and the correspondiereC(e) is given in Eq.(5.2).

[1] A. Papoulis,Probability, Random Variables, and Stochastic [9] E. Frehland, Biophys. Chen8, 255 (1978; E. Frehland and

Processes3rd ed.(McGraw-Hill, New York, 199). W. Stephan, Biochim. Biophys. Acta53 326 (1979; Bio-
[2] D. R. Cox and H. D. Miller,The Theory of Stochastic Pro- phys. Chem12, 63 (1980; Stochastic Transport Processes in

cessegChapman and Hall, New York, 1985 Discrete Biological SystemgSpringer-Verlag, New York,
[3] J. Walrand,An Introduction to Queueing NetworkBrentice- 1982.

Hall, Englewood Cliffs, NJ, 1988 [10] W. Feller, An Introduction to Probability Theory and its Ap-
[4] R. L. Stratonovich,Topics in the Theory of Random Noise plications (Wiley, New York, 1970, Vol. 2.

(Gordon and Breach, New York, 1963/0ol. 1. [11] P. Bordewijk, Chem. Phys. LetB2, 592 (1975.
[5] R. Landauer, Physica B8, 226(1989. [12] B. Nadler, M.Sc. thesis, Tel-Aviv University, 199inpub-
[6] R. S. Eisenberg, M. M. Ktosek, and Z. Schuss, J. Chem. Phys. lished.

102, 1767(1995. [13] Equation(2.14) differs by a factor of 2 from Bordewijk'$11]
[7] B. Hille, lonic Channels of Excitable Membrane2nd ed. result because of the presence of the membfagke

(Sinauer, Sunderland, MA, 1982 [14] J. Bockris and A. ReddyModern ElectrochemistryPlenum,
[8] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. New York, 1970.

Watson,Molecular Biology of the Cell2nd ed.(Garland, New  [15] F. Sigworth, Biophys. J47, 709 (1985; 49, 1041(1986); F.
York, 1989. Sigworth, D. W. Urry, and K. U. Prasaithid. 52, 1055(1987);



54 BIDIRECTIONAL SHOT NOISE IN A SINGLY . .. 1175

S. H. Heinemann and F. Sigworthnid. 54, 757 (1988; 57, (Plenum, New York, 1996
499 (1990; 60, 577(1991). [18] R. Coronado and C. Miller, Natur&ondon 280, 807 (1979
[16] A. Hainsworth, R. Levis, and R. S. Eisenberg, J. Gen. Physiol.  R. Coronado, R. Rosenberg, and C. Miller, J. Gen. Phyzgg)l.
104, 857 (1994. 425(1980.
[17] R. S. Eisenberg, J. Membr. Bidl50, 1 (1996. [19] G. Yellen, J. Gen. PhysioB4, 157 (1984).

[18] B. Sakmann and E. Nehesjngle-Channel Recordin@nd ed.



